OpenBiDexHand / hfserver.py
quantumiracle-git's picture
Upload hfserver.py
973ca84
raw
history blame
13.1 kB
from __future__ import annotations
import csv
import datetime
import io
import json
import os
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, List, Optional
import gradio as gr
from gradio import encryptor, utils
if TYPE_CHECKING:
from gradio.components import Component
class FlaggingCallback(ABC):
"""
An abstract class for defining the methods that any FlaggingCallback should have.
"""
@abstractmethod
def setup(self, components: List[Component], flagging_dir: str):
"""
This method should be overridden and ensure that everything is set up correctly for flag().
This method gets called once at the beginning of the Interface.launch() method.
Parameters:
components: Set of components that will provide flagged data.
flagging_dir: A string, typically containing the path to the directory where the flagging file should be storied (provided as an argument to Interface.__init__()).
"""
pass
@abstractmethod
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
"""
This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments.
This gets called every time the <flag> button is pressed.
Parameters:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
flag_index (optional): The index of the sample that is being flagged.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int) The total number of samples that have been flagged.
"""
pass
class SimpleCSVLogger(FlaggingCallback):
"""
A simple example implementation of the FlaggingCallback abstract class
provided for illustrative purposes.
"""
def setup(self, components: List[Component], flagging_dir: str):
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = os.path.join(flagging_dir, "log.csv")
csv_data = []
for component, sample in zip(self.components, flag_data):
csv_data.append(
component.save_flagged(
flagging_dir,
component.label,
sample,
None,
)
)
with open(log_filepath, "a", newline="") as csvfile:
writer = csv.writer(csvfile, quoting=csv.QUOTE_NONNUMERIC, quotechar="'")
writer.writerow(csv_data)
with open(log_filepath, "r") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
return line_count
class CSVLogger(FlaggingCallback):
"""
The default implementation of the FlaggingCallback abstract class.
Logs the input and output data to a CSV file. Supports encryption.
"""
def setup(
self,
components: List[Component],
flagging_dir: str,
encryption_key: Optional[str] = None,
):
self.components = components
self.flagging_dir = flagging_dir
self.encryption_key = encryption_key
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = os.path.join(flagging_dir, "log.csv")
is_new = not os.path.exists(log_filepath)
if flag_index is None:
csv_data = []
for component, sample in zip(self.components, flag_data):
csv_data.append(
component.save_flagged(
flagging_dir,
component.label,
sample,
self.encryption_key,
)
if sample is not None
else ""
)
csv_data.append(flag_option if flag_option is not None else "")
csv_data.append(username if username is not None else "")
csv_data.append(str(datetime.datetime.now()))
if is_new:
headers = [component.label for component in self.components] + [
"flag",
"username",
"timestamp",
]
def replace_flag_at_index(file_content):
file_content = io.StringIO(file_content)
content = list(csv.reader(file_content))
header = content[0]
flag_col_index = header.index("flag")
content[flag_index][flag_col_index] = flag_option
output = io.StringIO()
writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC, quotechar="'")
writer.writerows(content)
return output.getvalue()
if self.encryption_key:
output = io.StringIO()
if not is_new:
with open(log_filepath, "rb") as csvfile:
encrypted_csv = csvfile.read()
decrypted_csv = encryptor.decrypt(
self.encryption_key, encrypted_csv
)
file_content = decrypted_csv.decode()
if flag_index is not None:
file_content = replace_flag_at_index(file_content)
output.write(file_content)
writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC, quotechar="'")
if flag_index is None:
if is_new:
writer.writerow(headers)
writer.writerow(csv_data)
with open(log_filepath, "wb") as csvfile:
csvfile.write(
encryptor.encrypt(self.encryption_key, output.getvalue().encode())
)
else:
if flag_index is None:
with open(log_filepath, "a", newline="") as csvfile:
writer = csv.writer(
csvfile, quoting=csv.QUOTE_NONNUMERIC, quotechar="'"
)
if is_new:
writer.writerow(headers)
writer.writerow(csv_data)
else:
with open(log_filepath) as csvfile:
file_content = csvfile.read()
file_content = replace_flag_at_index(file_content)
with open(
log_filepath, "w", newline=""
) as csvfile: # newline parameter needed for Windows
csvfile.write(file_content)
with open(log_filepath, "r") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
return line_count
class HuggingFaceDatasetSaver(FlaggingCallback):
"""
A FlaggingCallback that saves flagged data to a HuggingFace dataset.
"""
def __init__(
self,
hf_foken: str,
dataset_name: str,
organization: Optional[str] = None,
private: bool = False,
verbose: bool = True,
):
"""
Params:
hf_token (str): The token to use to access the huggingface API.
dataset_name (str): The name of the dataset to save the data to, e.g.
"image-classifier-1"
organization (str): The name of the organization to which to attach
the datasets. If None, the dataset attaches to the user only.
private (bool): If the dataset does not already exist, whether it
should be created as a private dataset or public. Private datasets
may require paid huggingface.co accounts
verbose (bool): Whether to print out the status of the dataset
creation.
"""
self.hf_foken = hf_foken
self.dataset_name = dataset_name
self.organization_name = organization
self.dataset_private = private
self.verbose = verbose
def setup(self, components: List[Component], flagging_dir: str):
"""
Params:
flagging_dir (str): local directory where the dataset is cloned,
updated, and pushed from.
"""
try:
import huggingface_hub
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Package `huggingface_hub` not found is needed "
"for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
)
path_to_dataset_repo = huggingface_hub.create_repo(
# name=self.dataset_name, https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/hf_api.py
repo_id=self.dataset_name,
token=self.hf_foken,
private=self.dataset_private,
repo_type="dataset",
exist_ok=True,
)
self.path_to_dataset_repo = path_to_dataset_repo # e.g. "https://huggingface.co/datasets/abidlabs/test-audio-10"
self.components = components
self.flagging_dir = flagging_dir
self.dataset_dir = os.path.join(flagging_dir, self.dataset_name)
self.repo = huggingface_hub.Repository(
local_dir=self.dataset_dir,
clone_from=path_to_dataset_repo,
use_auth_token=self.hf_foken,
)
self.repo.git_pull()
# Should filename be user-specified?
self.log_file = os.path.join(self.dataset_dir, "data.csv")
self.infos_file = os.path.join(self.dataset_dir, "dataset_infos.json")
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
is_new = not os.path.exists(self.log_file)
infos = {"flagged": {"features": {}}}
with open(self.log_file, "a", newline="") as csvfile:
writer = csv.writer(csvfile)
# File previews for certain input and output types
file_preview_types = {
gr.inputs.Audio: "Audio",
gr.outputs.Audio: "Audio",
gr.inputs.Image: "Image",
gr.outputs.Image: "Image",
}
# Generate the headers and dataset_infos
if is_new:
headers = []
for component, sample in zip(self.components, flag_data):
headers.append(component.label)
headers.append(component.label)
infos["flagged"]["features"][component.label] = {
"dtype": "string",
"_type": "Value",
}
if isinstance(component, tuple(file_preview_types)):
headers.append(component.label + " file")
for _component, _type in file_preview_types.items():
if isinstance(component, _component):
infos["flagged"]["features"][
component.label + " file"
] = {"_type": _type}
break
headers.append("flag")
infos["flagged"]["features"]["flag"] = {
"dtype": "string",
"_type": "Value",
}
writer.writerow(headers)
# Generate the row corresponding to the flagged sample
csv_data = []
for component, sample in zip(self.components, flag_data):
filepath = component.save_flagged(
self.dataset_dir, component.label, sample, None
)
csv_data.append(filepath)
if isinstance(component, tuple(file_preview_types)):
csv_data.append(
"{}/resolve/main/{}".format(self.path_to_dataset_repo, filepath)
)
csv_data.append(flag_option if flag_option is not None else "")
writer.writerow(csv_data)
if is_new:
json.dump(infos, open(self.infos_file, "w"))
with open(self.log_file, "r") as csvfile:
line_count = len([None for row in csv.reader(csvfile)]) - 1
self.repo.push_to_hub(commit_message="Flagged sample #{}".format(line_count))
return line_count