Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import h5py | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
from torchvision.transforms import Compose | |
from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop | |
def hypersim_distance_to_depth(npyDistance): | |
intWidth, intHeight, fltFocal = 1024, 768, 886.81 | |
npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape( | |
1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None] | |
npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5, | |
intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None] | |
npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32) | |
npyImageplane = np.concatenate( | |
[npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2) | |
npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal | |
return npyDepth | |
class Hypersim(Dataset): | |
def __init__(self, filelist_path, mode, size=(518, 518)): | |
self.mode = mode | |
self.size = size | |
with open(filelist_path, 'r') as f: | |
self.filelist = f.read().splitlines() | |
net_w, net_h = size | |
self.transform = Compose([ | |
Resize( | |
width=net_w, | |
height=net_h, | |
resize_target=True if mode == 'train' else False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
] + ([Crop(size[0])] if self.mode == 'train' else [])) | |
def __getitem__(self, item): | |
img_path = self.filelist[item].split(' ')[0] | |
depth_path = self.filelist[item].split(' ')[1] | |
image = cv2.imread(img_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
depth_fd = h5py.File(depth_path, "r") | |
distance_meters = np.array(depth_fd['dataset']) | |
depth = hypersim_distance_to_depth(distance_meters) | |
sample = self.transform({'image': image, 'depth': depth}) | |
sample['image'] = torch.from_numpy(sample['image']) | |
sample['depth'] = torch.from_numpy(sample['depth']) | |
sample['valid_mask'] = (torch.isnan(sample['depth']) == 0) | |
sample['depth'][sample['valid_mask'] == 0] = 0 | |
sample['image_path'] = self.filelist[item].split(' ')[0] | |
return sample | |
def __len__(self): | |
return len(self.filelist) |