File size: 6,535 Bytes
c509e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import math
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               dilation=dilation, padding=dilation, bias=False)
        self.bn2 = BatchNorm(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = BatchNorm(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class ResNet(nn.Module):

    def __init__(self, block, layers, output_stride, BatchNorm, pretrained=True):
        self.inplanes = 64
        super(ResNet, self).__init__()
        blocks = [1, 2, 4]
        if output_stride == 16:
            strides = [1, 2, 2, 1]
            dilations = [1, 1, 1, 2]
        elif output_stride == 8:
            strides = [1, 2, 1, 1]
            dilations = [1, 1, 2, 4]
        else:
            raise NotImplementedError

        # Modules
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                bias=False)
        self.bn1 = BatchNorm(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm)
        self.layer4 = self._make_MG_unit(block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm)
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm)
        self._init_weight()

        # if pretrained:
        #     self._load_pretrained_model()

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation, downsample, BatchNorm))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm))

        return nn.Sequential(*layers)

    def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation=blocks[0]*dilation,
                            downsample=downsample, BatchNorm=BatchNorm))
        self.inplanes = planes * block.expansion
        for i in range(1, len(blocks)):
            layers.append(block(self.inplanes, planes, stride=1,
                                dilation=blocks[i]*dilation, BatchNorm=BatchNorm))

        return nn.Sequential(*layers)

    def forward(self, input):
        x = self.conv1(input)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        low_level_feat = x
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        return x, low_level_feat

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, SynchronizedBatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _load_pretrained_model(self):

        import urllib.request
        import ssl
        ssl._create_default_https_context = ssl._create_unverified_context
        response = urllib.request.urlopen('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth')

        pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth')
        model_dict = {}
        state_dict = self.state_dict()
        for k, v in pretrain_dict.items():
            if k in state_dict:
                # if 'conv1' in k:
                #     continue 
                model_dict[k] = v
        state_dict.update(model_dict)
        self.load_state_dict(state_dict)

def ResNet101(output_stride, BatchNorm, pretrained=True):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, pretrained=pretrained)
    return model

if __name__ == "__main__":
    import torch
    model = ResNet101(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=8)
    input = torch.rand(1, 3, 512, 512)
    output, low_level_feat = model(input)
    print(output.size())
    print(low_level_feat.size())