Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,107 Bytes
c509e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
from collections import OrderedDict
import os
import numpy as np
import torch
import torch.nn.functional as F
import os
from skimage.filters import threshold_sauvola
import cv2
def second2hours(seconds):
h = seconds//3600
seconds %= 3600
m = seconds//60
seconds %= 60
hms = '{:d} H : {:d} Min'.format(int(h),int(m))
return hms
def dict2string(loss_dict):
loss_string = ''
for key, value in loss_dict.items():
loss_string += key+' {:.4f}, '.format(value)
return loss_string[:-2]
def mkdir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return float(param_group['lr'])
def torch2cvimg(tensor,min=0,max=1):
'''
input:
tensor -> torch.tensor BxCxHxW C can be 1,3
return
im -> ndarray uint8 HxWxC
'''
im_list = []
for i in range(tensor.shape[0]):
im = tensor.detach().cpu().data.numpy()[i]
im = im.transpose(1,2,0)
im = np.clip(im,min,max)
im = ((im-min)/(max-min)*255).astype(np.uint8)
im_list.append(im)
return im_list
def cvimg2torch(img,min=0,max=1):
'''
input:
im -> ndarray uint8 HxWxC
return
tensor -> torch.tensor BxCxHxW
'''
img = img.astype(float) / 255.0
img = img.transpose(2, 0, 1) # NHWC -> NCHW
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
return img
def setup_seed(seed):
# np.random.seed(seed)
# random.seed(seed)
# torch.manual_seed(seed) #cpu
# torch.cuda.manual_seed_all(seed) #并行gpu
torch.backends.cudnn.deterministic = True #cpu/gpu结果一致
# torch.backends.cudnn.benchmark = False #训练集变化不大时使训练加速
def SauvolaModBinarization(image,n1=51,n2=51,k1=0.3,k2=0.3,default=True):
'''
Binarization using Sauvola's algorithm
@name : SauvolaModBinarization
parameters
@param image (numpy array of shape (3/1) of type np.uint8): color or gray scale image
optional parameters
@param n1 (int) : window size for running sauvola during the first pass
@param n2 (int): window size for running sauvola during the second pass
@param k1 (float): k value corresponding to sauvola during the first pass
@param k2 (float): k value corresponding to sauvola during the second pass
@param default (bool) : bollean variable to set the above parameter as default.
@param default is set to True : thus default values of the above optional parameters (n1,n2,k1,k2) are set to
n1 = 5 % of min(image height, image width)
n2 = 10 % of min(image height, image width)
k1 = 0.5
k2 = 0.5
Returns
@return A binary image of same size as @param image
@cite https://drive.google.com/file/d/1D3CyI5vtodPJeZaD2UV5wdcaIMtkBbdZ/view?usp=sharing
'''
if(default):
n1 = int(0.05*min(image.shape[0],image.shape[1]))
if (n1%2==0):
n1 = n1+1
n2 = int(0.1*min(image.shape[0],image.shape[1]))
if (n2%2==0):
n2 = n2+1
k1 = 0.5
k2 = 0.5
if(image.ndim==3):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = np.copy(image)
T1 = threshold_sauvola(gray, window_size=n1,k=k1)
max_val = np.amax(gray)
min_val = np.amin(gray)
C = np.copy(T1)
C = C.astype(np.float32)
C[gray > T1] = (gray[gray > T1] - T1[gray > T1])/(max_val - T1[gray > T1])
C[gray <= T1] = 0
C = C * 255.0
new_in = np.copy(C.astype(np.uint8))
T2 = threshold_sauvola(new_in, window_size=n2,k=k2)
binary = np.copy(gray)
binary[new_in <= T2] = 0
binary[new_in > T2] = 255
return binary,T2
def getBasecoord(h,w):
base_coord0 = np.tile(np.arange(h).reshape(h,1),(1,w)).astype(np.float32)
base_coord1 = np.tile(np.arange(w).reshape(1,w),(h,1)).astype(np.float32)
base_coord = np.concatenate((np.expand_dims(base_coord1,-1),np.expand_dims(base_coord0,-1)),-1)
return base_coord
import numpy as np
from scipy import ndimage as ndi
# lookup tables for bwmorph_thin
G123_LUT = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 0], dtype=np.bool_)
G123P_LUT = np.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0], dtype=np.bool_)
def bwmorph(image, n_iter=None):
"""
Perform morphological thinning of a binary image
Parameters
----------
image : binary (M, N) ndarray
The image to be thinned.
n_iter : int, number of iterations, optional
Regardless of the value of this parameter, the thinned image
is returned immediately if an iteration produces no change.
If this parameter is specified it thus sets an upper bound on
the number of iterations performed.
Returns
-------
out : ndarray of bools
Thinned image.
See also
--------
skeletonize
Notes
-----
This algorithm [1]_ works by making multiple passes over the image,
removing pixels matching a set of criteria designed to thin
connected regions while preserving eight-connected components and
2 x 2 squares [2]_. In each of the two sub-iterations the algorithm
correlates the intermediate skeleton image with a neighborhood mask,
then looks up each neighborhood in a lookup table indicating whether
the central pixel should be deleted in that sub-iteration.
References
----------
.. [1] Z. Guo and R. W. Hall, "Parallel thinning with
two-subiteration algorithms," Comm. ACM, vol. 32, no. 3,
pp. 359-373, 1989.
.. [2] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
Methodologies-A Comprehensive Survey," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 14, No. 9,
September 1992, p. 879
Examples
--------
>>> square = np.zeros((7, 7), dtype=np.uint8)
>>> square[1:-1, 2:-2] = 1
>>> square[0,1] = 1
>>> square
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
>>> skel = bwmorph_thin(square)
>>> skel.astype(np.uint8)
array([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
"""
# check parameters
if n_iter is None:
n = -1
elif n_iter <= 0:
raise ValueError('n_iter must be > 0')
else:
n = n_iter
# check that we have a 2d binary image, and convert it
# to uint8
skel = np.array(image).astype(np.uint8)
if skel.ndim != 2:
raise ValueError('2D array required')
if not np.all(np.in1d(image.flat,(0,1))):
raise ValueError('Image contains values other than 0 and 1')
# neighborhood mask
mask = np.array([[ 8, 4, 2],
[16, 0, 1],
[32, 64,128]],dtype=np.uint8)
# iterate either 1) indefinitely or 2) up to iteration limit
while n != 0:
before = np.sum(skel) # count points before thinning
# for each subiteration
for lut in [G123_LUT, G123P_LUT]:
# correlate image with neighborhood mask
N = ndi.correlate(skel, mask, mode='constant')
# take deletion decision from this subiteration's LUT
D = np.take(lut, N)
# perform deletion
skel[D] = 0
after = np.sum(skel) # coint points after thinning
if before == after:
# iteration had no effect: finish
break
# count down to iteration limit (or endlessly negative)
n -= 1
return skel.astype(np.bool_)
"""
# here's how to make the LUTs
def nabe(n):
return np.array([n>>i&1 for i in range(0,9)]).astype(np.bool_)
def hood(n):
return np.take(nabe(n), np.array([[3, 2, 1],
[4, 8, 0],
[5, 6, 7]]))
def G1(n):
s = 0
bits = nabe(n)
for i in (0,2,4,6):
if not(bits[i]) and (bits[i+1] or bits[(i+2) % 8]):
s += 1
return s==1
g1_lut = np.array([G1(n) for n in range(256)])
def G2(n):
n1, n2 = 0, 0
bits = nabe(n)
for k in (1,3,5,7):
if bits[k] or bits[k-1]:
n1 += 1
if bits[k] or bits[(k+1) % 8]:
n2 += 1
return min(n1,n2) in [2,3]
g2_lut = np.array([G2(n) for n in range(256)])
g12_lut = g1_lut & g2_lut
def G3(n):
bits = nabe(n)
return not((bits[1] or bits[2] or not(bits[7])) and bits[0])
def G3p(n):
bits = nabe(n)
return not((bits[5] or bits[6] or not(bits[3])) and bits[4])
g3_lut = np.array([G3(n) for n in range(256)])
g3p_lut = np.array([G3p(n) for n in range(256)])
g123_lut = g12_lut & g3_lut
g123p_lut = g12_lut & g3p_lut
"""
"""
author : Peb Ruswono Aryan
metric for evaluating binarization algorithms
implemented :
* F-Measure
* pseudo F-Measure (as in H-DIBCO 2010 & 2012)
* Peak Signal to Noise Ratio (PSNR)
* Negative Rate Measure (NRM)
* Misclassification Penaltiy Measure (MPM)
* Distance Reciprocal Distortion (DRD)
usage:
python metric.py test-image.png ground-truth-image.png
"""
def drd_fn(im, im_gt):
height, width = im.shape
neg = np.zeros(im.shape)
neg[im_gt!=im] = 1
y, x = np.unravel_index(np.flatnonzero(neg), im.shape)
n = 2
m = n*2+1
W = np.zeros((m,m), dtype=np.uint8)
W[n,n] = 1.
W = cv2.distanceTransform(1-W, cv2.DIST_L2, cv2.DIST_MASK_PRECISE)
W[n,n] = 1.
W = 1./W
W[n,n] = 0.
W /= W.sum()
nubn = 0.
block_size = 8
for y1 in range(0, height, block_size):
for x1 in range(0, width, block_size):
y2 = min(y1+block_size-1,height-1)
x2 = min(x1+block_size-1,width-1)
block_dim = (x2-x1+1)*(y1-y1+1)
block = 1-im_gt[y1:y2, x1:x2]
block_sum = np.sum(block)
if block_sum>0 and block_sum<block_dim:
nubn += 1
drd_sum= 0.
tmp = np.zeros(W.shape)
for i in range(min(1,len(y))):
tmp[:,:] = 0
x1 = max(0, x[i]-n)
y1 = max(0, y[i]-n)
x2 = min(width-1, x[i]+n)
y2 = min(height-1, y[i]+n)
yy1 = y1-y[i]+n
yy2 = y2-y[i]+n
xx1 = x1-x[i]+n
xx2 = x2-x[i]+n
tmp[yy1:yy2+1,xx1:xx2+1] = np.abs(im[y[i],x[i]]-im_gt[y1:y2+1,x1:x2+1])
tmp *= W
drd_sum += np.sum(tmp)
return drd_sum/nubn
def bin_metric(im,im_gt):
height, width = im.shape
npixel = height*width
im[im>0] = 1
gt_mask = im_gt==0
im_gt[im_gt>0] = 1
sk = bwmorph(1-im_gt)
im_sk = np.ones(im_gt.shape)
im_sk[sk] = 0
kernel = np.ones((3,3), dtype=np.uint8)
im_dil = cv2.erode(im_gt, kernel)
im_gtb = im_gt-im_dil
im_gtbd = cv2.distanceTransform(1-im_gtb, cv2.DIST_L2, 3)
nd = im_gtbd.sum()
ptp = np.zeros(im_gt.shape)
ptp[(im==0) & (im_sk==0)] = 1
numptp = ptp.sum()
tp = np.zeros(im_gt.shape)
tp[(im==0) & (im_gt==0)] = 1
numtp = tp.sum()
tn = np.zeros(im_gt.shape)
tn[(im==1) & (im_gt==1)] = 1
numtn = tn.sum()
fp = np.zeros(im_gt.shape)
fp[(im==0) & (im_gt==1)] = 1
numfp = fp.sum()
fn = np.zeros(im_gt.shape)
fn[(im==1) & (im_gt==0)] = 1
numfn = fn.sum()
precision = numtp / (numtp + numfp)
recall = numtp / (numtp + numfn)
precall = numptp / np.sum(1-im_sk)
fmeasure = (2*recall*precision)/(recall+precision)
pfmeasure = (2*precall*precision)/(precall+precision)
mse = (numfp+numfn)/npixel
psnr = 10.*np.log10(1./mse)
nrfn = numfn / (numfn + numtp)
nrfp = numfp / (numfp + numtn)
nrm = (nrfn + nrfp)/2
im_dn = im_gtbd.copy()
im_dn[fn==0] = 0
dn = np.sum(im_dn)
mpfn = dn / nd
im_dp = im_gtbd.copy()
im_dp[fp==0] = 0
dp = np.sum(im_dp)
mpfp = dp / nd
mpm = (mpfp + mpfn) / 2
drd = drd_fn(im, im_gt)
return fmeasure, pfmeasure,psnr,nrm, mpm,drd
# print("F-measure\t: {0}\npF-measure\t: {1}\nPSNR\t\t: {2}\nNRM\t\t: {3}\nMPM\t\t: {4}\nDRD\t\t: {5}".format(fmeasure, pfmeasure, psnr, nrm, mpm, drd)) |