File size: 960 Bytes
feb9889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer


dataset = load_dataset("emotion")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=6)

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=1,  # Reduce epochs for faster training
    per_device_train_batch_size=8,  # Smaller batch size to fit CPU
    logging_dir="./logs",
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"]
)

trainer.train()