Spaces:
Sleeping
Sleeping
File size: 1,050 Bytes
b2a1014 8a1e016 351535d b2a1014 9102add e425865 ca4a761 8a1e016 e425865 f1d5b21 b2a1014 d7ca936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("cyberagent/open-calm-3b", device_map="auto", torch_dtype=torch.float32)
tokenizer = AutoTokenizer.from_pretrained("cyberagent/open-calm-3b")
def my_inference_function(mail):
mail=mail.replace("\n", "")
inputs = tokenizer(mail, return_tensors="pt").to(model.device)
with torch.no_grad():
tokens = model.generate(
**inputs,
max_new_tokens=4,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.05,
pad_token_id=tokenizer.pad_token_id,
)
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
output=output.replace("(上司へのメール敬語で)","")
output=output.replace(mail,"")
output=output.replace("\n", "")
return output
gradio_interface = gradio.Interface(
fn = my_inference_function,
inputs = "text",
outputs = "text"
)
gradio_interface.launch() |