import gradio import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("cyberagent/open-calm-small", device_map="auto", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained("cyberagent/open-calm-small") def my_inference_function(name): mail="お世話になっております。商品開発部の森本です。先日は貴重な" inputs = tokenizer(f"(上司へのメール敬語で){mail}", return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=4, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.05, pad_token_id=tokenizer.pad_token_id, ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) output=output.replace(f"(上司へのメール敬語で){mail}","") output=output.replace("\n", "") return output gradio_interface = gradio.Interface( fn = my_inference_function, inputs = "text", outputs = "text" ) gradio_interface.launch()