Spaces:
Sleeping
Sleeping
Rename app1.py to app.py
Browse files- app1.py → app.py +35 -66
app1.py → app.py
RENAMED
@@ -1,114 +1,83 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
4 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
from llama_index.legacy.callbacks import CallbackManager
|
6 |
from llama_index.llms.openai_like import OpenAILike
|
|
|
7 |
# Create an instance of CallbackManager
|
8 |
callback_manager = CallbackManager()
|
9 |
-
|
10 |
-
# 通过Spaces的secret传入
|
11 |
-
api_key = os.environ.get('eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI2NDIwNTAxNCIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMTA2MTMzNywiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTgzMDE5ODY2MDkiLCJ1dWlkIjoiZjA0ZGY1NDYtNjhkMC00ODVmLTgwYmYtMTc1NWZiNmZkOTBkIiwiZW1haWwiOiIiLCJleHAiOjE3NDY2MTMzMzd9.0huDT4TdNsHfpD6PUFQnYR7XztRKIM0uvka7ZWIS5beEaNDXD4vd8btv_rv-hdLSCu_H4MDMDrauzR5bnPow0Q')
|
12 |
-
# 下载模型
|
13 |
-
os.system('git lfs install')
|
14 |
-
os.system('git clone https://www.modelscope.cn/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2.git')
|
15 |
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
16 |
model = "internlm2.5-latest"
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
st.title("llama_index_demo")
|
|
|
22 |
# 初始化模型
|
23 |
@st.cache_resource
|
24 |
def init_models():
|
25 |
-
"""
|
26 |
-
初始化并缓存模型。
|
27 |
-
本函数通过加载预训练的嵌入模型和语言模型来初始化设置,并构建查询引擎。
|
28 |
-
使用缓存装饰器是为了提高效率,避免重复初始化模型。
|
29 |
-
返回:
|
30 |
-
query_engine: 用于查询的引擎。
|
31 |
-
"""
|
32 |
-
# 初始化嵌入模型
|
33 |
embed_model = HuggingFaceEmbedding(
|
34 |
-
model_name="
|
35 |
)
|
36 |
Settings.embed_model = embed_model
|
37 |
-
|
|
|
38 |
Settings.llm = llm
|
39 |
-
|
40 |
-
documents = SimpleDirectoryReader("
|
41 |
index = VectorStoreIndex.from_documents(documents)
|
42 |
query_engine = index.as_query_engine()
|
|
|
43 |
return query_engine
|
|
|
44 |
# 检查是否需要初始化模型
|
45 |
if 'query_engine' not in st.session_state:
|
46 |
st.session_state['query_engine'] = init_models()
|
|
|
47 |
def greet2(question):
|
48 |
-
"""
|
49 |
-
使用预设的question参数调用session_state中的query_engine来生成响应。
|
50 |
-
参数:
|
51 |
-
question (str): 一个字符串,代表用户的问题或查询。
|
52 |
-
返回:
|
53 |
-
response: query_engine对question的响应结果,类型依据具体实现而定。
|
54 |
-
"""
|
55 |
-
# 从session_state字典中获取名为'query_engine'的引擎,并使用它来查询问题
|
56 |
response = st.session_state['query_engine'].query(question)
|
57 |
-
# 返回查询得到的响应结果
|
58 |
return response
|
59 |
-
|
60 |
-
|
|
|
61 |
if "messages" not in st.session_state.keys():
|
62 |
-
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
63 |
-
|
|
|
64 |
for message in st.session_state.messages:
|
65 |
-
# 根据消息的角色类型创建聊天消息框
|
66 |
with st.chat_message(message["role"]):
|
67 |
-
# 在消息框中写入消息内容
|
68 |
st.write(message["content"])
|
|
|
69 |
def clear_chat_history():
|
70 |
-
"""
|
71 |
-
清除聊天记录并重置会话状态。
|
72 |
-
此函数将当前会话状态的消息清空,仅保留一条表示助手问候的初始消息。
|
73 |
-
这有助于为用户提供一个新的开始,并确保聊天记录不会变得过于冗长。
|
74 |
-
"""
|
75 |
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
76 |
-
|
77 |
-
st.sidebar.button('
|
|
|
|
|
78 |
def generate_llama_index_response(prompt_input):
|
79 |
-
"""
|
80 |
-
根据输入的提示生成基于llama索引的响应。
|
81 |
-
此函数的作用是通过特定的提示输入,生成一个相应的响应。它调用了另一个函数greet2,
|
82 |
-
以完成响应的生成过程。这种封装方式允许在greet2函数中实现复杂的处理逻辑,
|
83 |
-
同时对外提供一个简单的接口。
|
84 |
-
参数:
|
85 |
-
prompt_input (str): 用于生成响应的输入提示。
|
86 |
-
返回:
|
87 |
-
str: 由greet2函数生成的响应。
|
88 |
-
"""
|
89 |
return greet2(prompt_input)
|
|
|
90 |
# User-provided prompt
|
91 |
-
# 如果用户通过聊天输入提供了信息,则执行以下操作
|
92 |
if prompt := st.chat_input():
|
93 |
-
# 将用户的聊天信息添加到会话状态的消息列表中
|
94 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
95 |
-
# 在聊天界面的用户消息区域显示用户输入的内容
|
96 |
with st.chat_message("user"):
|
97 |
st.write(prompt)
|
|
|
98 |
# Gegenerate_llama_index_response last message is not from assistant
|
99 |
-
# 检查最近的一条消息是否不是由助手发送的
|
100 |
if st.session_state.messages[-1]["role"] != "assistant":
|
101 |
-
# 在助手的聊天消息框中
|
102 |
with st.chat_message("assistant"):
|
103 |
-
# 显示“Thinking...”动画,表示正在处理请求
|
104 |
with st.spinner("Thinking..."):
|
105 |
-
# 生成响应
|
106 |
response = generate_llama_index_response(prompt)
|
107 |
-
# 创建一个占位符,用于显示响应内容
|
108 |
placeholder = st.empty()
|
109 |
-
# 在占位符中显示响应内容
|
110 |
placeholder.markdown(response)
|
111 |
-
# 创建一个新的消息对象,表示助手的响应
|
112 |
message = {"role": "assistant", "content": response}
|
113 |
-
|
114 |
-
st.session_state.messages.append(message)
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
from llama_index.legacy.callbacks import CallbackManager
|
5 |
from llama_index.llms.openai_like import OpenAILike
|
6 |
+
|
7 |
# Create an instance of CallbackManager
|
8 |
callback_manager = CallbackManager()
|
9 |
+
|
|
|
|
|
|
|
|
|
|
|
10 |
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
11 |
model = "internlm2.5-latest"
|
12 |
+
api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI2NDIwNTAxNCIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMTA2MTMzNywiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTgzMDE5ODY2MDkiLCJ1dWlkIjoiZjA0ZGY1NDYtNjhkMC00ODVmLTgwYmYtMTc1NWZiNmZkOTBkIiwiZW1haWwiOiIiLCJleHAiOjE3NDY2MTMzMzd9.0huDT4TdNsHfpD6PUFQnYR7XztRKIM0uvka7ZWIS5beEaNDXD4vd8btv_rv-hdLSCu_H4MDMDrauzR5bnPow0Q"
|
13 |
+
|
14 |
+
# api_base_url = "https://api.siliconflow.cn/v1"
|
15 |
+
# model = "internlm/internlm2_5-7b-chat"
|
16 |
+
# api_key = "请填写 API Key"
|
17 |
+
|
18 |
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
23 |
st.title("llama_index_demo")
|
24 |
+
|
25 |
# 初始化模型
|
26 |
@st.cache_resource
|
27 |
def init_models():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
embed_model = HuggingFaceEmbedding(
|
29 |
+
model_name="model"
|
30 |
)
|
31 |
Settings.embed_model = embed_model
|
32 |
+
|
33 |
+
#用初始化llm
|
34 |
Settings.llm = llm
|
35 |
+
|
36 |
+
documents = SimpleDirectoryReader("data").load_data()
|
37 |
index = VectorStoreIndex.from_documents(documents)
|
38 |
query_engine = index.as_query_engine()
|
39 |
+
|
40 |
return query_engine
|
41 |
+
|
42 |
# 检查是否需要初始化模型
|
43 |
if 'query_engine' not in st.session_state:
|
44 |
st.session_state['query_engine'] = init_models()
|
45 |
+
|
46 |
def greet2(question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
response = st.session_state['query_engine'].query(question)
|
|
|
48 |
return response
|
49 |
+
|
50 |
+
|
51 |
+
# Store LLM generated responses
|
52 |
if "messages" not in st.session_state.keys():
|
53 |
+
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
54 |
+
|
55 |
+
# Display or clear chat messages
|
56 |
for message in st.session_state.messages:
|
|
|
57 |
with st.chat_message(message["role"]):
|
|
|
58 |
st.write(message["content"])
|
59 |
+
|
60 |
def clear_chat_history():
|
|
|
|
|
|
|
|
|
|
|
61 |
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
|
62 |
+
|
63 |
+
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
|
64 |
+
|
65 |
+
# Function for generating LLaMA2 response
|
66 |
def generate_llama_index_response(prompt_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return greet2(prompt_input)
|
68 |
+
|
69 |
# User-provided prompt
|
|
|
70 |
if prompt := st.chat_input():
|
|
|
71 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
72 |
with st.chat_message("user"):
|
73 |
st.write(prompt)
|
74 |
+
|
75 |
# Gegenerate_llama_index_response last message is not from assistant
|
|
|
76 |
if st.session_state.messages[-1]["role"] != "assistant":
|
|
|
77 |
with st.chat_message("assistant"):
|
|
|
78 |
with st.spinner("Thinking..."):
|
|
|
79 |
response = generate_llama_index_response(prompt)
|
|
|
80 |
placeholder = st.empty()
|
|
|
81 |
placeholder.markdown(response)
|
|
|
82 |
message = {"role": "assistant", "content": response}
|
83 |
+
st.session_state.messages.append(message)
|
|