Spaces:
Sleeping
Sleeping
File size: 149,096 Bytes
f7c08b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 |
# coding=utf-8
# Copyright 2023-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Related resources:
# https://huggingface.co/tasks
# https://huggingface.co/docs/huggingface.js/inference/README
# https://github.com/huggingface/huggingface.js/tree/main/packages/inference/src
# https://github.com/huggingface/text-generation-inference/tree/main/clients/python
# https://github.com/huggingface/text-generation-inference/blob/main/clients/python/text_generation/client.py
# https://huggingface.slack.com/archives/C03E4DQ9LAJ/p1680169099087869
# https://github.com/huggingface/unity-api#tasks
#
# Some TODO:
# - add all tasks
#
# NOTE: the philosophy of this client is "let's make it as easy as possible to use it, even if less optimized". Some
# examples of how it translates:
# - Timeout / Server unavailable is handled by the client in a single "timeout" parameter.
# - Files can be provided as bytes, file paths, or URLs and the client will try to "guess" the type.
# - Images are parsed as PIL.Image for easier manipulation.
# - Provides a "recommended model" for each task => suboptimal but user-wise quicker to get a first script running.
# - Only the main parameters are publicly exposed. Power users can always read the docs for more options.
import base64
import logging
import re
import time
import warnings
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Literal, Optional, Union, overload
from requests import HTTPError
from requests.structures import CaseInsensitiveDict
from huggingface_hub.constants import ALL_INFERENCE_API_FRAMEWORKS, INFERENCE_ENDPOINT, MAIN_INFERENCE_API_FRAMEWORKS
from huggingface_hub.errors import BadRequestError, InferenceTimeoutError
from huggingface_hub.inference._common import (
TASKS_EXPECTING_IMAGES,
ContentT,
ModelStatus,
_b64_encode,
_b64_to_image,
_bytes_to_dict,
_bytes_to_image,
_bytes_to_list,
_fetch_recommended_models,
_get_unsupported_text_generation_kwargs,
_import_numpy,
_open_as_binary,
_prepare_payload,
_set_unsupported_text_generation_kwargs,
_stream_chat_completion_response,
_stream_text_generation_response,
raise_text_generation_error,
)
from huggingface_hub.inference._generated.types import (
AudioClassificationOutputElement,
AudioClassificationOutputTransform,
AudioToAudioOutputElement,
AutomaticSpeechRecognitionOutput,
ChatCompletionInputGrammarType,
ChatCompletionInputStreamOptions,
ChatCompletionInputTool,
ChatCompletionInputToolChoiceClass,
ChatCompletionInputToolChoiceEnum,
ChatCompletionOutput,
ChatCompletionStreamOutput,
DocumentQuestionAnsweringOutputElement,
FillMaskOutputElement,
ImageClassificationOutputElement,
ImageClassificationOutputTransform,
ImageSegmentationOutputElement,
ImageSegmentationSubtask,
ImageToImageTargetSize,
ImageToTextOutput,
ObjectDetectionOutputElement,
Padding,
QuestionAnsweringOutputElement,
SummarizationOutput,
SummarizationTruncationStrategy,
TableQuestionAnsweringOutputElement,
TextClassificationOutputElement,
TextClassificationOutputTransform,
TextGenerationInputGrammarType,
TextGenerationOutput,
TextGenerationStreamOutput,
TextToImageTargetSize,
TextToSpeechEarlyStoppingEnum,
TokenClassificationAggregationStrategy,
TokenClassificationOutputElement,
TranslationOutput,
TranslationTruncationStrategy,
VisualQuestionAnsweringOutputElement,
ZeroShotClassificationOutputElement,
ZeroShotImageClassificationOutputElement,
)
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
from huggingface_hub.utils._deprecation import _deprecate_arguments
if TYPE_CHECKING:
import numpy as np
from PIL.Image import Image
logger = logging.getLogger(__name__)
MODEL_KWARGS_NOT_USED_REGEX = re.compile(r"The following `model_kwargs` are not used by the model: \[(.*?)\]")
class InferenceClient:
"""
Initialize a new Inference Client.
[`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used
seamlessly with either the (free) Inference API or self-hosted Inference Endpoints.
Args:
model (`str`, `optional`):
The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `meta-llama/Meta-Llama-3-8B-Instruct`
or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is
automatically selected for the task.
Note: for better compatibility with OpenAI's client, `model` has been aliased as `base_url`. Those 2
arguments are mutually exclusive. If using `base_url` for chat completion, the `/chat/completions` suffix
path will be appended to the base URL (see the [TGI Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api)
documentation for details). When passing a URL as `model`, the client will not append any suffix path to it.
token (`str` or `bool`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Pass `token=False` if you don't want to send your token to the server.
Note: for better compatibility with OpenAI's client, `token` has been aliased as `api_key`. Those 2
arguments are mutually exclusive and have the exact same behavior.
timeout (`float`, `optional`):
The maximum number of seconds to wait for a response from the server. Loading a new model in Inference
API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
headers (`Dict[str, str]`, `optional`):
Additional headers to send to the server. By default only the authorization and user-agent headers are sent.
Values in this dictionary will override the default values.
cookies (`Dict[str, str]`, `optional`):
Additional cookies to send to the server.
proxies (`Any`, `optional`):
Proxies to use for the request.
base_url (`str`, `optional`):
Base URL to run inference. This is a duplicated argument from `model` to make [`InferenceClient`]
follow the same pattern as `openai.OpenAI` client. Cannot be used if `model` is set. Defaults to None.
api_key (`str`, `optional`):
Token to use for authentication. This is a duplicated argument from `token` to make [`InferenceClient`]
follow the same pattern as `openai.OpenAI` client. Cannot be used if `token` is set. Defaults to None.
"""
def __init__(
self,
model: Optional[str] = None,
*,
token: Union[str, bool, None] = None,
timeout: Optional[float] = None,
headers: Optional[Dict[str, str]] = None,
cookies: Optional[Dict[str, str]] = None,
proxies: Optional[Any] = None,
# OpenAI compatibility
base_url: Optional[str] = None,
api_key: Optional[str] = None,
) -> None:
if model is not None and base_url is not None:
raise ValueError(
"Received both `model` and `base_url` arguments. Please provide only one of them."
" `base_url` is an alias for `model` to make the API compatible with OpenAI's client."
" If using `base_url` for chat completion, the `/chat/completions` suffix path will be appended to the base url."
" When passing a URL as `model`, the client will not append any suffix path to it."
)
if token is not None and api_key is not None:
raise ValueError(
"Received both `token` and `api_key` arguments. Please provide only one of them."
" `api_key` is an alias for `token` to make the API compatible with OpenAI's client."
" It has the exact same behavior as `token`."
)
self.model: Optional[str] = model
self.token: Union[str, bool, None] = token if token is not None else api_key
self.headers: CaseInsensitiveDict[str] = CaseInsensitiveDict(
build_hf_headers(token=self.token) # 'authorization' + 'user-agent'
)
if headers is not None:
self.headers.update(headers)
self.cookies = cookies
self.timeout = timeout
self.proxies = proxies
# OpenAI compatibility
self.base_url = base_url
def __repr__(self):
return f"<InferenceClient(model='{self.model if self.model else ''}', timeout={self.timeout})>"
@overload
def post( # type: ignore[misc]
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
stream: Literal[False] = ...,
) -> bytes: ...
@overload
def post( # type: ignore[misc]
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
stream: Literal[True] = ...,
) -> Iterable[bytes]: ...
@overload
def post(
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
stream: bool = False,
) -> Union[bytes, Iterable[bytes]]: ...
def post(
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
stream: bool = False,
) -> Union[bytes, Iterable[bytes]]:
"""
Make a POST request to the inference server.
Args:
json (`Union[str, Dict, List]`, *optional*):
The JSON data to send in the request body, specific to each task. Defaults to None.
data (`Union[str, Path, bytes, BinaryIO]`, *optional*):
The content to send in the request body, specific to each task.
It can be raw bytes, a pointer to an opened file, a local file path,
or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed,
`data` will take precedence. At least `json` or `data` must be provided. Defaults to None.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. Will override the model defined at the instance level. Defaults to None.
task (`str`, *optional*):
The task to perform on the inference. All available tasks can be found
[here](https://huggingface.co/tasks). Used only to default to a recommended model if `model` is not
provided. At least `model` or `task` must be provided. Defaults to None.
stream (`bool`, *optional*):
Whether to iterate over streaming APIs.
Returns:
bytes: The raw bytes returned by the server.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
"""
url = self._resolve_url(model, task)
if data is not None and json is not None:
warnings.warn("Ignoring `json` as `data` is passed as binary.")
# Set Accept header if relevant
headers = self.headers.copy()
if task in TASKS_EXPECTING_IMAGES and "Accept" not in headers:
headers["Accept"] = "image/png"
t0 = time.time()
timeout = self.timeout
while True:
with _open_as_binary(data) as data_as_binary:
try:
response = get_session().post(
url,
json=json,
data=data_as_binary,
headers=headers,
cookies=self.cookies,
timeout=self.timeout,
stream=stream,
proxies=self.proxies,
)
except TimeoutError as error:
# Convert any `TimeoutError` to a `InferenceTimeoutError`
raise InferenceTimeoutError(f"Inference call timed out: {url}") from error # type: ignore
try:
hf_raise_for_status(response)
return response.iter_lines() if stream else response.content
except HTTPError as error:
if error.response.status_code == 422 and task is not None:
error.args = (
f"{error.args[0]}\nMake sure '{task}' task is supported by the model.",
) + error.args[1:]
if error.response.status_code == 503:
# If Model is unavailable, either raise a TimeoutError...
if timeout is not None and time.time() - t0 > timeout:
raise InferenceTimeoutError(
f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
f" {self.timeout}).",
request=error.request,
response=error.response,
) from error
# ...or wait 1s and retry
logger.info(f"Waiting for model to be loaded on the server: {error}")
time.sleep(1)
if "X-wait-for-model" not in headers and url.startswith(INFERENCE_ENDPOINT):
headers["X-wait-for-model"] = "1"
if timeout is not None:
timeout = max(self.timeout - (time.time() - t0), 1) # type: ignore
continue
raise
def audio_classification(
self,
audio: ContentT,
*,
model: Optional[str] = None,
top_k: Optional[int] = None,
function_to_apply: Optional["AudioClassificationOutputTransform"] = None,
) -> List[AudioClassificationOutputElement]:
"""
Perform audio classification on the provided audio content.
Args:
audio (Union[str, Path, bytes, BinaryIO]):
The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an
audio file.
model (`str`, *optional*):
The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub
or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for
audio classification will be used.
top_k (`int`, *optional*):
When specified, limits the output to the top K most probable classes.
function_to_apply (`"AudioClassificationOutputTransform"`, *optional*):
The function to apply to the model outputs in order to retrieve the scores.
Returns:
`List[AudioClassificationOutputElement]`: List of [`AudioClassificationOutputElement`] items containing the predicted labels and their confidence.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.audio_classification("audio.flac")
[
AudioClassificationOutputElement(score=0.4976358711719513, label='hap'),
AudioClassificationOutputElement(score=0.3677836060523987, label='neu'),
...
]
```
"""
parameters = {"function_to_apply": function_to_apply, "top_k": top_k}
payload = _prepare_payload(audio, parameters=parameters, expect_binary=True)
response = self.post(**payload, model=model, task="audio-classification")
return AudioClassificationOutputElement.parse_obj_as_list(response)
def audio_to_audio(
self,
audio: ContentT,
*,
model: Optional[str] = None,
) -> List[AudioToAudioOutputElement]:
"""
Performs multiple tasks related to audio-to-audio depending on the model (eg: speech enhancement, source separation).
Args:
audio (Union[str, Path, bytes, BinaryIO]):
The audio content for the model. It can be raw audio bytes, a local audio file, or a URL pointing to an
audio file.
model (`str`, *optional*):
The model can be any model which takes an audio file and returns another audio file. Can be a model ID hosted on the Hugging Face Hub
or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for
audio_to_audio will be used.
Returns:
`List[AudioToAudioOutputElement]`: A list of [`AudioToAudioOutputElement`] items containing audios label, content-type, and audio content in blob.
Raises:
`InferenceTimeoutError`:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> audio_output = client.audio_to_audio("audio.flac")
>>> for i, item in enumerate(audio_output):
>>> with open(f"output_{i}.flac", "wb") as f:
f.write(item.blob)
```
"""
response = self.post(data=audio, model=model, task="audio-to-audio")
audio_output = AudioToAudioOutputElement.parse_obj_as_list(response)
for item in audio_output:
item.blob = base64.b64decode(item.blob)
return audio_output
def automatic_speech_recognition(
self,
audio: ContentT,
*,
model: Optional[str] = None,
) -> AutomaticSpeechRecognitionOutput:
"""
Perform automatic speech recognition (ASR or audio-to-text) on the given audio content.
Args:
audio (Union[str, Path, bytes, BinaryIO]):
The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file.
model (`str`, *optional*):
The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended model for ASR will be used.
Returns:
[`AutomaticSpeechRecognitionOutput`]: An item containing the transcribed text and optionally the timestamp chunks.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.automatic_speech_recognition("hello_world.flac").text
"hello world"
```
"""
response = self.post(data=audio, model=model, task="automatic-speech-recognition")
return AutomaticSpeechRecognitionOutput.parse_obj_as_instance(response)
@overload
def chat_completion( # type: ignore
self,
messages: List[Dict],
*,
model: Optional[str] = None,
stream: Literal[False] = False,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[List[float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[ChatCompletionInputGrammarType] = None,
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stream_options: Optional[ChatCompletionInputStreamOptions] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None,
tool_prompt: Optional[str] = None,
tools: Optional[List[ChatCompletionInputTool]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
) -> ChatCompletionOutput: ...
@overload
def chat_completion( # type: ignore
self,
messages: List[Dict],
*,
model: Optional[str] = None,
stream: Literal[True] = True,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[List[float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[ChatCompletionInputGrammarType] = None,
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stream_options: Optional[ChatCompletionInputStreamOptions] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None,
tool_prompt: Optional[str] = None,
tools: Optional[List[ChatCompletionInputTool]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
) -> Iterable[ChatCompletionStreamOutput]: ...
@overload
def chat_completion(
self,
messages: List[Dict],
*,
model: Optional[str] = None,
stream: bool = False,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[List[float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[ChatCompletionInputGrammarType] = None,
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stream_options: Optional[ChatCompletionInputStreamOptions] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None,
tool_prompt: Optional[str] = None,
tools: Optional[List[ChatCompletionInputTool]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]: ...
def chat_completion(
self,
messages: List[Dict],
*,
model: Optional[str] = None,
stream: bool = False,
# Parameters from ChatCompletionInput (handled manually)
frequency_penalty: Optional[float] = None,
logit_bias: Optional[List[float]] = None,
logprobs: Optional[bool] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[float] = None,
response_format: Optional[ChatCompletionInputGrammarType] = None,
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stream_options: Optional[ChatCompletionInputStreamOptions] = None,
temperature: Optional[float] = None,
tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None,
tool_prompt: Optional[str] = None,
tools: Optional[List[ChatCompletionInputTool]] = None,
top_logprobs: Optional[int] = None,
top_p: Optional[float] = None,
) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]:
"""
A method for completing conversations using a specified language model.
<Tip>
The `client.chat_completion` method is aliased as `client.chat.completions.create` for compatibility with OpenAI's client.
Inputs and outputs are strictly the same and using either syntax will yield the same results.
Check out the [Inference guide](https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility)
for more details about OpenAI's compatibility.
</Tip>
Args:
messages (List of [`ChatCompletionInputMessage`]):
Conversation history consisting of roles and content pairs.
model (`str`, *optional*):
The model to use for chat-completion. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended model for chat-based text-generation will be used.
See https://huggingface.co/tasks/text-generation for more details.
If `model` is a model ID, it is passed to the server as the `model` parameter. If you want to define a
custom URL while setting `model` in the request payload, you must set `base_url` when initializing [`InferenceClient`].
frequency_penalty (`float`, *optional*):
Penalizes new tokens based on their existing frequency
in the text so far. Range: [-2.0, 2.0]. Defaults to 0.0.
logit_bias (`List[float]`, *optional*):
Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
(specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
result in a ban or exclusive selection of the relevant token. Defaults to None.
logprobs (`bool`, *optional*):
Whether to return log probabilities of the output tokens or not. If true, returns the log
probabilities of each output token returned in the content of message.
max_tokens (`int`, *optional*):
Maximum number of tokens allowed in the response. Defaults to 100.
n (`int`, *optional*):
UNUSED.
presence_penalty (`float`, *optional*):
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the
text so far, increasing the model's likelihood to talk about new topics.
response_format ([`ChatCompletionInputGrammarType`], *optional*):
Grammar constraints. Can be either a JSONSchema or a regex.
seed (Optional[`int`], *optional*):
Seed for reproducible control flow. Defaults to None.
stop (Optional[`str`], *optional*):
Up to four strings which trigger the end of the response.
Defaults to None.
stream (`bool`, *optional*):
Enable realtime streaming of responses. Defaults to False.
stream_options ([`ChatCompletionInputStreamOptions`], *optional*):
Options for streaming completions.
temperature (`float`, *optional*):
Controls randomness of the generations. Lower values ensure
less random completions. Range: [0, 2]. Defaults to 1.0.
top_logprobs (`int`, *optional*):
An integer between 0 and 5 specifying the number of most likely tokens to return at each token
position, each with an associated log probability. logprobs must be set to true if this parameter is
used.
top_p (`float`, *optional*):
Fraction of the most likely next words to sample from.
Must be between 0 and 1. Defaults to 1.0.
tool_choice ([`ChatCompletionInputToolChoiceClass`] or [`ChatCompletionInputToolChoiceEnum`], *optional*):
The tool to use for the completion. Defaults to "auto".
tool_prompt (`str`, *optional*):
A prompt to be appended before the tools.
tools (List of [`ChatCompletionInputTool`], *optional*):
A list of tools the model may call. Currently, only functions are supported as a tool. Use this to
provide a list of functions the model may generate JSON inputs for.
Returns:
[`ChatCompletionOutput`] or Iterable of [`ChatCompletionStreamOutput`]:
Generated text returned from the server:
- if `stream=False`, the generated text is returned as a [`ChatCompletionOutput`] (default).
- if `stream=True`, the generated text is returned token by token as a sequence of [`ChatCompletionStreamOutput`].
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> messages = [{"role": "user", "content": "What is the capital of France?"}]
>>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
>>> client.chat_completion(messages, max_tokens=100)
ChatCompletionOutput(
choices=[
ChatCompletionOutputComplete(
finish_reason='eos_token',
index=0,
message=ChatCompletionOutputMessage(
role='assistant',
content='The capital of France is Paris.',
name=None,
tool_calls=None
),
logprobs=None
)
],
created=1719907176,
id='',
model='meta-llama/Meta-Llama-3-8B-Instruct',
object='text_completion',
system_fingerprint='2.0.4-sha-f426a33',
usage=ChatCompletionOutputUsage(
completion_tokens=8,
prompt_tokens=17,
total_tokens=25
)
)
```
Example using streaming:
```py
>>> from huggingface_hub import InferenceClient
>>> messages = [{"role": "user", "content": "What is the capital of France?"}]
>>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
>>> for token in client.chat_completion(messages, max_tokens=10, stream=True):
... print(token)
ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content='The', role='assistant'), index=0, finish_reason=None)], created=1710498504)
ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' capital', role='assistant'), index=0, finish_reason=None)], created=1710498504)
(...)
ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' may', role='assistant'), index=0, finish_reason=None)], created=1710498504)
```
Example using OpenAI's syntax:
```py
# instead of `from openai import OpenAI`
from huggingface_hub import InferenceClient
# instead of `client = OpenAI(...)`
client = InferenceClient(
base_url=...,
api_key=...,
)
output = client.chat.completions.create(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Count to 10"},
],
stream=True,
max_tokens=1024,
)
for chunk in output:
print(chunk.choices[0].delta.content)
```
Example using Image + Text as input:
```py
>>> from huggingface_hub import InferenceClient
# provide a remote URL
>>> image_url ="https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# or a base64-encoded image
>>> image_path = "/path/to/image.jpeg"
>>> with open(image_path, "rb") as f:
... base64_image = base64.b64encode(f.read()).decode("utf-8")
>>> image_url = f"data:image/jpeg;base64,{base64_image}"
>>> client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
>>> output = client.chat.completions.create(
... messages=[
... {
... "role": "user",
... "content": [
... {
... "type": "image_url",
... "image_url": {"url": image_url},
... },
... {
... "type": "text",
... "text": "Describe this image in one sentence.",
... },
... ],
... },
... ],
... )
>>> output
The image depicts the iconic Statue of Liberty situated in New York Harbor, New York, on a clear day.
```
Example using tools:
```py
>>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
>>> messages = [
... {
... "role": "system",
... "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
... },
... {
... "role": "user",
... "content": "What's the weather like the next 3 days in San Francisco, CA?",
... },
... ]
>>> tools = [
... {
... "type": "function",
... "function": {
... "name": "get_current_weather",
... "description": "Get the current weather",
... "parameters": {
... "type": "object",
... "properties": {
... "location": {
... "type": "string",
... "description": "The city and state, e.g. San Francisco, CA",
... },
... "format": {
... "type": "string",
... "enum": ["celsius", "fahrenheit"],
... "description": "The temperature unit to use. Infer this from the users location.",
... },
... },
... "required": ["location", "format"],
... },
... },
... },
... {
... "type": "function",
... "function": {
... "name": "get_n_day_weather_forecast",
... "description": "Get an N-day weather forecast",
... "parameters": {
... "type": "object",
... "properties": {
... "location": {
... "type": "string",
... "description": "The city and state, e.g. San Francisco, CA",
... },
... "format": {
... "type": "string",
... "enum": ["celsius", "fahrenheit"],
... "description": "The temperature unit to use. Infer this from the users location.",
... },
... "num_days": {
... "type": "integer",
... "description": "The number of days to forecast",
... },
... },
... "required": ["location", "format", "num_days"],
... },
... },
... },
... ]
>>> response = client.chat_completion(
... model="meta-llama/Meta-Llama-3-70B-Instruct",
... messages=messages,
... tools=tools,
... tool_choice="auto",
... max_tokens=500,
... )
>>> response.choices[0].message.tool_calls[0].function
ChatCompletionOutputFunctionDefinition(
arguments={
'location': 'San Francisco, CA',
'format': 'fahrenheit',
'num_days': 3
},
name='get_n_day_weather_forecast',
description=None
)
```
Example using response_format:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
>>> messages = [
... {
... "role": "user",
... "content": "I saw a puppy a cat and a raccoon during my bike ride in the park. What did I saw and when?",
... },
... ]
>>> response_format = {
... "type": "json",
... "value": {
... "properties": {
... "location": {"type": "string"},
... "activity": {"type": "string"},
... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5},
... "animals": {"type": "array", "items": {"type": "string"}},
... },
... "required": ["location", "activity", "animals_seen", "animals"],
... },
... }
>>> response = client.chat_completion(
... messages=messages,
... response_format=response_format,
... max_tokens=500,
)
>>> response.choices[0].message.content
'{\n\n"activity": "bike ride",\n"animals": ["puppy", "cat", "raccoon"],\n"animals_seen": 3,\n"location": "park"}'
```
"""
model_url = self._resolve_chat_completion_url(model)
# `model` is sent in the payload. Not used by the server but can be useful for debugging/routing.
# If it's a ID on the Hub => use it. Otherwise, we use a random string.
model_id = model or self.model or "tgi"
if model_id.startswith(("http://", "https://")):
model_id = "tgi" # dummy value
payload = dict(
model=model_id,
messages=messages,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
temperature=temperature,
tool_choice=tool_choice,
tool_prompt=tool_prompt,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
stream=stream,
stream_options=stream_options,
)
payload = {key: value for key, value in payload.items() if value is not None}
data = self.post(model=model_url, json=payload, stream=stream)
if stream:
return _stream_chat_completion_response(data) # type: ignore[arg-type]
return ChatCompletionOutput.parse_obj_as_instance(data) # type: ignore[arg-type]
def _resolve_chat_completion_url(self, model: Optional[str] = None) -> str:
# Since `chat_completion(..., model=xxx)` is also a payload parameter for the server, we need to handle 'model' differently.
# `self.base_url` and `self.model` takes precedence over 'model' argument only in `chat_completion`.
model_id_or_url = self.base_url or self.model or model or self.get_recommended_model("text-generation")
# Resolve URL if it's a model ID
model_url = (
model_id_or_url
if model_id_or_url.startswith(("http://", "https://"))
else self._resolve_url(model_id_or_url, task="text-generation")
)
# Strip trailing /
model_url = model_url.rstrip("/")
# Append /chat/completions if not already present
if model_url.endswith("/v1"):
model_url += "/chat/completions"
# Append /v1/chat/completions if not already present
if not model_url.endswith("/chat/completions"):
model_url += "/v1/chat/completions"
return model_url
def document_question_answering(
self,
image: ContentT,
question: str,
*,
model: Optional[str] = None,
doc_stride: Optional[int] = None,
handle_impossible_answer: Optional[bool] = None,
lang: Optional[str] = None,
max_answer_len: Optional[int] = None,
max_question_len: Optional[int] = None,
max_seq_len: Optional[int] = None,
top_k: Optional[int] = None,
word_boxes: Optional[List[Union[List[float], str]]] = None,
) -> List[DocumentQuestionAnsweringOutputElement]:
"""
Answer questions on document images.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image for the context. It can be raw bytes, an image file, or a URL to an online image.
question (`str`):
Question to be answered.
model (`str`, *optional*):
The model to use for the document question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended document question answering model will be used.
Defaults to None.
doc_stride (`int`, *optional*):
If the words in the document are too long to fit with the question for the model, it will be split in
several chunks with some overlap. This argument controls the size of that overlap.
handle_impossible_answer (`bool`, *optional*):
Whether to accept impossible as an answer
lang (`str`, *optional*):
Language to use while running OCR. Defaults to english.
max_answer_len (`int`, *optional*):
The maximum length of predicted answers (e.g., only answers with a shorter length are considered).
max_question_len (`int`, *optional*):
The maximum length of the question after tokenization. It will be truncated if needed.
max_seq_len (`int`, *optional*):
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the
model. The context will be split in several chunks (using doc_stride as overlap) if needed.
top_k (`int`, *optional*):
The number of answers to return (will be chosen by order of likelihood). Can return less than top_k
answers if there are not enough options available within the context.
word_boxes (`List[Union[List[float], str`, *optional*):
A list of words and bounding boxes (normalized 0->1000). If provided, the inference will skip the OCR
step and use the provided bounding boxes instead.
Returns:
`List[DocumentQuestionAnsweringOutputElement]`: a list of [`DocumentQuestionAnsweringOutputElement`] items containing the predicted label, associated probability, word ids, and page number.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.document_question_answering(image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", question="What is the invoice number?")
[DocumentQuestionAnsweringOutputElement(answer='us-001', end=16, score=0.9999666213989258, start=16)]
```
"""
inputs: Dict[str, Any] = {"question": question, "image": _b64_encode(image)}
parameters = {
"doc_stride": doc_stride,
"handle_impossible_answer": handle_impossible_answer,
"lang": lang,
"max_answer_len": max_answer_len,
"max_question_len": max_question_len,
"max_seq_len": max_seq_len,
"top_k": top_k,
"word_boxes": word_boxes,
}
payload = _prepare_payload(inputs, parameters=parameters)
response = self.post(**payload, model=model, task="document-question-answering")
return DocumentQuestionAnsweringOutputElement.parse_obj_as_list(response)
def feature_extraction(
self,
text: str,
*,
normalize: Optional[bool] = None,
prompt_name: Optional[str] = None,
truncate: Optional[bool] = None,
truncation_direction: Optional[Literal["Left", "Right"]] = None,
model: Optional[str] = None,
) -> "np.ndarray":
"""
Generate embeddings for a given text.
Args:
text (`str`):
The text to embed.
model (`str`, *optional*):
The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
Defaults to None.
normalize (`bool`, *optional*):
Whether to normalize the embeddings or not.
Only available on server powered by Text-Embedding-Inference.
prompt_name (`str`, *optional*):
The name of the prompt that should be used by for encoding. If not set, no prompt will be applied.
Must be a key in the `Sentence Transformers` configuration `prompts` dictionary.
For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ",...},
then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?"
because the prompt text will be prepended before any text to encode.
truncate (`bool`, *optional*):
Whether to truncate the embeddings or not.
Only available on server powered by Text-Embedding-Inference.
truncation_direction (`Literal["Left", "Right"]`, *optional*):
Which side of the input should be truncated when `truncate=True` is passed.
Returns:
`np.ndarray`: The embedding representing the input text as a float32 numpy array.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.feature_extraction("Hi, who are you?")
array([[ 2.424802 , 2.93384 , 1.1750331 , ..., 1.240499, -0.13776633, -0.7889173 ],
[-0.42943227, -0.6364878 , -1.693462 , ..., 0.41978157, -2.4336355 , 0.6162071 ],
...,
[ 0.28552425, -0.928395 , -1.2077185 , ..., 0.76810825, -2.1069427 , 0.6236161 ]], dtype=float32)
```
"""
parameters = {
"normalize": normalize,
"prompt_name": prompt_name,
"truncate": truncate,
"truncation_direction": truncation_direction,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(**payload, model=model, task="feature-extraction")
np = _import_numpy()
return np.array(_bytes_to_dict(response), dtype="float32")
def fill_mask(
self,
text: str,
*,
model: Optional[str] = None,
targets: Optional[List[str]] = None,
top_k: Optional[int] = None,
) -> List[FillMaskOutputElement]:
"""
Fill in a hole with a missing word (token to be precise).
Args:
text (`str`):
a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask).
model (`str`, *optional*):
The model to use for the fill mask task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended fill mask model will be used.
targets (`List[str`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first
resulting token will be used (with a warning, and that might be slower).
top_k (`int`, *optional*):
When passed, overrides the number of predictions to return.
Returns:
`List[FillMaskOutputElement]`: a list of [`FillMaskOutputElement`] items containing the predicted label, associated
probability, token reference, and completed text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.fill_mask("The goal of life is <mask>.")
[
FillMaskOutputElement(score=0.06897063553333282, token=11098, token_str=' happiness', sequence='The goal of life is happiness.'),
FillMaskOutputElement(score=0.06554922461509705, token=45075, token_str=' immortality', sequence='The goal of life is immortality.')
]
```
"""
parameters = {"targets": targets, "top_k": top_k}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(**payload, model=model, task="fill-mask")
return FillMaskOutputElement.parse_obj_as_list(response)
def image_classification(
self,
image: ContentT,
*,
model: Optional[str] = None,
function_to_apply: Optional["ImageClassificationOutputTransform"] = None,
top_k: Optional[int] = None,
) -> List[ImageClassificationOutputElement]:
"""
Perform image classification on the given image using the specified model.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The image to classify. It can be raw bytes, an image file, or a URL to an online image.
model (`str`, *optional*):
The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a
deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used.
function_to_apply (`"ImageClassificationOutputTransform"`, *optional*):
The function to apply to the model outputs in order to retrieve the scores.
top_k (`int`, *optional*):
When specified, limits the output to the top K most probable classes.
Returns:
`List[ImageClassificationOutputElement]`: a list of [`ImageClassificationOutputElement`] items containing the predicted label and associated probability.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
[ImageClassificationOutputElement(label='Blenheim spaniel', score=0.9779096841812134), ...]
```
"""
parameters = {"function_to_apply": function_to_apply, "top_k": top_k}
payload = _prepare_payload(image, parameters=parameters, expect_binary=True)
response = self.post(**payload, model=model, task="image-classification")
return ImageClassificationOutputElement.parse_obj_as_list(response)
def image_segmentation(
self,
image: ContentT,
*,
model: Optional[str] = None,
mask_threshold: Optional[float] = None,
overlap_mask_area_threshold: Optional[float] = None,
subtask: Optional["ImageSegmentationSubtask"] = None,
threshold: Optional[float] = None,
) -> List[ImageSegmentationOutputElement]:
"""
Perform image segmentation on the given image using the specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The image to segment. It can be raw bytes, an image file, or a URL to an online image.
model (`str`, *optional*):
The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a
deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used.
mask_threshold (`float`, *optional*):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*):
Mask overlap threshold to eliminate small, disconnected segments.
subtask (`"ImageSegmentationSubtask"`, *optional*):
Segmentation task to be performed, depending on model capabilities.
threshold (`float`, *optional*):
Probability threshold to filter out predicted masks.
Returns:
`List[ImageSegmentationOutputElement]`: A list of [`ImageSegmentationOutputElement`] items containing the segmented masks and associated attributes.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_segmentation("cat.jpg")
[ImageSegmentationOutputElement(score=0.989008, label='LABEL_184', mask=<PIL.PngImagePlugin.PngImageFile image mode=L size=400x300 at 0x7FDD2B129CC0>), ...]
```
"""
parameters = {
"mask_threshold": mask_threshold,
"overlap_mask_area_threshold": overlap_mask_area_threshold,
"subtask": subtask,
"threshold": threshold,
}
payload = _prepare_payload(image, parameters=parameters, expect_binary=True)
response = self.post(**payload, model=model, task="image-segmentation")
output = ImageSegmentationOutputElement.parse_obj_as_list(response)
for item in output:
item.mask = _b64_to_image(item.mask) # type: ignore [assignment]
return output
def image_to_image(
self,
image: ContentT,
prompt: Optional[str] = None,
*,
negative_prompt: Optional[List[str]] = None,
num_inference_steps: Optional[int] = None,
guidance_scale: Optional[float] = None,
model: Optional[str] = None,
target_size: Optional[ImageToImageTargetSize] = None,
**kwargs,
) -> "Image":
"""
Perform image-to-image translation using a specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image for translation. It can be raw bytes, an image file, or a URL to an online image.
prompt (`str`, *optional*):
The text prompt to guide the image generation.
negative_prompt (`List[str]`, *optional*):
One or several prompt to guide what NOT to include in image generation.
num_inference_steps (`int`, *optional*):
For diffusion models. The number of denoising steps. More denoising steps usually lead to a higher
quality image at the expense of slower inference.
guidance_scale (`float`, *optional*):
For diffusion models. A higher guidance scale value encourages the model to generate images closely
linked to the text prompt at the expense of lower image quality.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
target_size (`ImageToImageTargetSize`, *optional*):
The size in pixel of the output image.
Returns:
`Image`: The translated image.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> image = client.image_to_image("cat.jpg", prompt="turn the cat into a tiger")
>>> image.save("tiger.jpg")
```
"""
parameters = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"target_size": target_size,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
**kwargs,
}
payload = _prepare_payload(image, parameters=parameters, expect_binary=True)
response = self.post(**payload, model=model, task="image-to-image")
return _bytes_to_image(response)
def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> ImageToTextOutput:
"""
Takes an input image and return text.
Models can have very different outputs depending on your use case (image captioning, optical character recognition
(OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image to caption. It can be raw bytes, an image file, or a URL to an online image..
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
[`ImageToTextOutput`]: The generated text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_to_text("cat.jpg")
'a cat standing in a grassy field '
>>> client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
'a dog laying on the grass next to a flower pot '
```
"""
response = self.post(data=image, model=model, task="image-to-text")
output = ImageToTextOutput.parse_obj(response)
return output[0] if isinstance(output, list) else output
def list_deployed_models(
self, frameworks: Union[None, str, Literal["all"], List[str]] = None
) -> Dict[str, List[str]]:
"""
List models deployed on the Serverless Inference API service.
This helper checks deployed models framework by framework. By default, it will check the 4 main frameworks that
are supported and account for 95% of the hosted models. However, if you want a complete list of models you can
specify `frameworks="all"` as input. Alternatively, if you know before-hand which framework you are interested
in, you can also restrict to search to this one (e.g. `frameworks="text-generation-inference"`). The more
frameworks are checked, the more time it will take.
<Tip warning={true}>
This endpoint method does not return a live list of all models available for the Serverless Inference API service.
It searches over a cached list of models that were recently available and the list may not be up to date.
If you want to know the live status of a specific model, use [`~InferenceClient.get_model_status`].
</Tip>
<Tip>
This endpoint method is mostly useful for discoverability. If you already know which model you want to use and want to
check its availability, you can directly use [`~InferenceClient.get_model_status`].
</Tip>
Args:
frameworks (`Literal["all"]` or `List[str]` or `str`, *optional*):
The frameworks to filter on. By default only a subset of the available frameworks are tested. If set to
"all", all available frameworks will be tested. It is also possible to provide a single framework or a
custom set of frameworks to check.
Returns:
`Dict[str, List[str]]`: A dictionary mapping task names to a sorted list of model IDs.
Example:
```python
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
# Discover zero-shot-classification models currently deployed
>>> models = client.list_deployed_models()
>>> models["zero-shot-classification"]
['Narsil/deberta-large-mnli-zero-cls', 'facebook/bart-large-mnli', ...]
# List from only 1 framework
>>> client.list_deployed_models("text-generation-inference")
{'text-generation': ['bigcode/starcoder', 'meta-llama/Llama-2-70b-chat-hf', ...], ...}
```
"""
# Resolve which frameworks to check
if frameworks is None:
frameworks = MAIN_INFERENCE_API_FRAMEWORKS
elif frameworks == "all":
frameworks = ALL_INFERENCE_API_FRAMEWORKS
elif isinstance(frameworks, str):
frameworks = [frameworks]
frameworks = list(set(frameworks))
# Fetch them iteratively
models_by_task: Dict[str, List[str]] = {}
def _unpack_response(framework: str, items: List[Dict]) -> None:
for model in items:
if framework == "sentence-transformers":
# Model running with the `sentence-transformers` framework can work with both tasks even if not
# branded as such in the API response
models_by_task.setdefault("feature-extraction", []).append(model["model_id"])
models_by_task.setdefault("sentence-similarity", []).append(model["model_id"])
else:
models_by_task.setdefault(model["task"], []).append(model["model_id"])
for framework in frameworks:
response = get_session().get(f"{INFERENCE_ENDPOINT}/framework/{framework}", headers=self.headers)
hf_raise_for_status(response)
_unpack_response(framework, response.json())
# Sort alphabetically for discoverability and return
for task, models in models_by_task.items():
models_by_task[task] = sorted(set(models), key=lambda x: x.lower())
return models_by_task
def object_detection(
self, image: ContentT, *, model: Optional[str] = None, threshold: Optional[float] = None
) -> List[ObjectDetectionOutputElement]:
"""
Perform object detection on the given image using the specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The image to detect objects on. It can be raw bytes, an image file, or a URL to an online image.
model (`str`, *optional*):
The model to use for object detection. Can be a model ID hosted on the Hugging Face Hub or a URL to a
deployed Inference Endpoint. If not provided, the default recommended model for object detection (DETR) will be used.
threshold (`float`, *optional*):
The probability necessary to make a prediction.
Returns:
`List[ObjectDetectionOutputElement]`: A list of [`ObjectDetectionOutputElement`] items containing the bounding boxes and associated attributes.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
`ValueError`:
If the request output is not a List.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.object_detection("people.jpg")
[ObjectDetectionOutputElement(score=0.9486683011054993, label='person', box=ObjectDetectionBoundingBox(xmin=59, ymin=39, xmax=420, ymax=510)), ...]
```
"""
parameters = {
"threshold": threshold,
}
payload = _prepare_payload(image, parameters=parameters, expect_binary=True)
response = self.post(**payload, model=model, task="object-detection")
return ObjectDetectionOutputElement.parse_obj_as_list(response)
def question_answering(
self,
question: str,
context: str,
*,
model: Optional[str] = None,
align_to_words: Optional[bool] = None,
doc_stride: Optional[int] = None,
handle_impossible_answer: Optional[bool] = None,
max_answer_len: Optional[int] = None,
max_question_len: Optional[int] = None,
max_seq_len: Optional[int] = None,
top_k: Optional[int] = None,
) -> Union[QuestionAnsweringOutputElement, List[QuestionAnsweringOutputElement]]:
"""
Retrieve the answer to a question from a given text.
Args:
question (`str`):
Question to be answered.
context (`str`):
The context of the question.
model (`str`):
The model to use for the question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint.
align_to_words (`bool`, *optional*):
Attempts to align the answer to real words. Improves quality on space separated languages. Might hurt
on non-space-separated languages (like Japanese or Chinese)
doc_stride (`int`, *optional*):
If the context is too long to fit with the question for the model, it will be split in several chunks
with some overlap. This argument controls the size of that overlap.
handle_impossible_answer (`bool`, *optional*):
Whether to accept impossible as an answer.
max_answer_len (`int`, *optional*):
The maximum length of predicted answers (e.g., only answers with a shorter length are considered).
max_question_len (`int`, *optional*):
The maximum length of the question after tokenization. It will be truncated if needed.
max_seq_len (`int`, *optional*):
The maximum length of the total sentence (context + question) in tokens of each chunk passed to the
model. The context will be split in several chunks (using docStride as overlap) if needed.
top_k (`int`, *optional*):
The number of answers to return (will be chosen by order of likelihood). Note that we return less than
topk answers if there are not enough options available within the context.
Returns:
Union[`QuestionAnsweringOutputElement`, List[`QuestionAnsweringOutputElement`]]:
When top_k is 1 or not provided, it returns a single `QuestionAnsweringOutputElement`.
When top_k is greater than 1, it returns a list of `QuestionAnsweringOutputElement`.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.question_answering(question="What's my name?", context="My name is Clara and I live in Berkeley.")
QuestionAnsweringOutputElement(answer='Clara', end=16, score=0.9326565265655518, start=11)
```
"""
parameters = {
"align_to_words": align_to_words,
"doc_stride": doc_stride,
"handle_impossible_answer": handle_impossible_answer,
"max_answer_len": max_answer_len,
"max_question_len": max_question_len,
"max_seq_len": max_seq_len,
"top_k": top_k,
}
inputs: Dict[str, Any] = {"question": question, "context": context}
payload = _prepare_payload(inputs, parameters=parameters)
response = self.post(
**payload,
model=model,
task="question-answering",
)
# Parse the response as a single `QuestionAnsweringOutputElement` when top_k is 1 or not provided, or a list of `QuestionAnsweringOutputElement` to ensure backward compatibility.
output = QuestionAnsweringOutputElement.parse_obj(response)
return output
def sentence_similarity(
self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None
) -> List[float]:
"""
Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings.
Args:
sentence (`str`):
The main sentence to compare to others.
other_sentences (`List[str]`):
The list of sentences to compare to.
model (`str`, *optional*):
The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
Defaults to None.
Returns:
`List[float]`: The embedding representing the input text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.sentence_similarity(
... "Machine learning is so easy.",
... other_sentences=[
... "Deep learning is so straightforward.",
... "This is so difficult, like rocket science.",
... "I can't believe how much I struggled with this.",
... ],
... )
[0.7785726189613342, 0.45876261591911316, 0.2906220555305481]
```
"""
response = self.post(
json={"inputs": {"source_sentence": sentence, "sentences": other_sentences}},
model=model,
task="sentence-similarity",
)
return _bytes_to_list(response)
@_deprecate_arguments(
version="0.29",
deprecated_args=["parameters"],
custom_message=(
"The `parameters` argument is deprecated and will be removed in a future version. "
"Provide individual parameters instead: `clean_up_tokenization_spaces`, `generate_parameters`, and `truncation`."
),
)
def summarization(
self,
text: str,
*,
parameters: Optional[Dict[str, Any]] = None,
model: Optional[str] = None,
clean_up_tokenization_spaces: Optional[bool] = None,
generate_parameters: Optional[Dict[str, Any]] = None,
truncation: Optional["SummarizationTruncationStrategy"] = None,
) -> SummarizationOutput:
"""
Generate a summary of a given text using a specified model.
Args:
text (`str`):
The input text to summarize.
parameters (`Dict[str, Any]`, *optional*):
Additional parameters for summarization. Check out this [page](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
for more details.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended model for summarization will be used.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether to clean up the potential extra spaces in the text output.
generate_parameters (`Dict[str, Any]`, *optional*):
Additional parametrization of the text generation algorithm.
truncation (`"SummarizationTruncationStrategy"`, *optional*):
The truncation strategy to use.
Returns:
[`SummarizationOutput`]: The generated summary text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.summarization("The Eiffel tower...")
SummarizationOutput(generated_text="The Eiffel tower is one of the most famous landmarks in the world....")
```
"""
if parameters is None:
parameters = {
"clean_up_tokenization_spaces": clean_up_tokenization_spaces,
"generate_parameters": generate_parameters,
"truncation": truncation,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(**payload, model=model, task="summarization")
return SummarizationOutput.parse_obj_as_list(response)[0]
def table_question_answering(
self,
table: Dict[str, Any],
query: str,
*,
model: Optional[str] = None,
padding: Optional["Padding"] = None,
sequential: Optional[bool] = None,
truncation: Optional[bool] = None,
) -> TableQuestionAnsweringOutputElement:
"""
Retrieve the answer to a question from information given in a table.
Args:
table (`str`):
A table of data represented as a dict of lists where entries are headers and the lists are all the
values, all lists must have the same size.
query (`str`):
The query in plain text that you want to ask the table.
model (`str`):
The model to use for the table-question-answering task. Can be a model ID hosted on the Hugging Face
Hub or a URL to a deployed Inference Endpoint.
padding (`"Padding"`, *optional*):
Activates and controls padding.
sequential (`bool`, *optional*):
Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the
inference to be done sequentially to extract relations within sequences, given their conversational
nature.
truncation (`bool`, *optional*):
Activates and controls truncation.
Returns:
[`TableQuestionAnsweringOutputElement`]: a table question answering output containing the answer, coordinates, cells and the aggregator used.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> query = "How many stars does the transformers repository have?"
>>> table = {"Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"]}
>>> client.table_question_answering(table, query, model="google/tapas-base-finetuned-wtq")
TableQuestionAnsweringOutputElement(answer='36542', coordinates=[[0, 1]], cells=['36542'], aggregator='AVERAGE')
```
"""
parameters = {
"padding": padding,
"sequential": sequential,
"truncation": truncation,
}
inputs = {
"query": query,
"table": table,
}
payload = _prepare_payload(inputs, parameters=parameters)
response = self.post(
**payload,
model=model,
task="table-question-answering",
)
return TableQuestionAnsweringOutputElement.parse_obj_as_instance(response)
def tabular_classification(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[str]:
"""
Classifying a target category (a group) based on a set of attributes.
Args:
table (`Dict[str, Any]`):
Set of attributes to classify.
model (`str`, *optional*):
The model to use for the tabular classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended tabular classification model will be used.
Defaults to None.
Returns:
`List`: a list of labels, one per row in the initial table.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> table = {
... "fixed_acidity": ["7.4", "7.8", "10.3"],
... "volatile_acidity": ["0.7", "0.88", "0.32"],
... "citric_acid": ["0", "0", "0.45"],
... "residual_sugar": ["1.9", "2.6", "6.4"],
... "chlorides": ["0.076", "0.098", "0.073"],
... "free_sulfur_dioxide": ["11", "25", "5"],
... "total_sulfur_dioxide": ["34", "67", "13"],
... "density": ["0.9978", "0.9968", "0.9976"],
... "pH": ["3.51", "3.2", "3.23"],
... "sulphates": ["0.56", "0.68", "0.82"],
... "alcohol": ["9.4", "9.8", "12.6"],
... }
>>> client.tabular_classification(table=table, model="julien-c/wine-quality")
["5", "5", "5"]
```
"""
response = self.post(
json={"table": table},
model=model,
task="tabular-classification",
)
return _bytes_to_list(response)
def tabular_regression(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[float]:
"""
Predicting a numerical target value given a set of attributes/features in a table.
Args:
table (`Dict[str, Any]`):
Set of attributes stored in a table. The attributes used to predict the target can be both numerical and categorical.
model (`str`, *optional*):
The model to use for the tabular regression task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended tabular regression model will be used.
Defaults to None.
Returns:
`List`: a list of predicted numerical target values.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> table = {
... "Height": ["11.52", "12.48", "12.3778"],
... "Length1": ["23.2", "24", "23.9"],
... "Length2": ["25.4", "26.3", "26.5"],
... "Length3": ["30", "31.2", "31.1"],
... "Species": ["Bream", "Bream", "Bream"],
... "Width": ["4.02", "4.3056", "4.6961"],
... }
>>> client.tabular_regression(table, model="scikit-learn/Fish-Weight")
[110, 120, 130]
```
"""
response = self.post(json={"table": table}, model=model, task="tabular-regression")
return _bytes_to_list(response)
def text_classification(
self,
text: str,
*,
model: Optional[str] = None,
top_k: Optional[int] = None,
function_to_apply: Optional["TextClassificationOutputTransform"] = None,
) -> List[TextClassificationOutputElement]:
"""
Perform text classification (e.g. sentiment-analysis) on the given text.
Args:
text (`str`):
A string to be classified.
model (`str`, *optional*):
The model to use for the text classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended text classification model will be used.
Defaults to None.
top_k (`int`, *optional*):
When specified, limits the output to the top K most probable classes.
function_to_apply (`"TextClassificationOutputTransform"`, *optional*):
The function to apply to the model outputs in order to retrieve the scores.
Returns:
`List[TextClassificationOutputElement]`: a list of [`TextClassificationOutputElement`] items containing the predicted label and associated probability.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.text_classification("I like you")
[
TextClassificationOutputElement(label='POSITIVE', score=0.9998695850372314),
TextClassificationOutputElement(label='NEGATIVE', score=0.0001304351753788069),
]
```
"""
parameters = {
"function_to_apply": function_to_apply,
"top_k": top_k,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(
**payload,
model=model,
task="text-classification",
)
return TextClassificationOutputElement.parse_obj_as_list(response)[0] # type: ignore [return-value]
@overload
def text_generation( # type: ignore
self,
prompt: str,
*,
details: Literal[False] = ...,
stream: Literal[False] = ...,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> str: ...
@overload
def text_generation( # type: ignore
self,
prompt: str,
*,
details: Literal[True] = ...,
stream: Literal[False] = ...,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> TextGenerationOutput: ...
@overload
def text_generation( # type: ignore
self,
prompt: str,
*,
details: Literal[False] = ...,
stream: Literal[True] = ...,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> Iterable[str]: ...
@overload
def text_generation( # type: ignore
self,
prompt: str,
*,
details: Literal[True] = ...,
stream: Literal[True] = ...,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> Iterable[TextGenerationStreamOutput]: ...
@overload
def text_generation(
self,
prompt: str,
*,
details: Literal[True] = ...,
stream: bool = ...,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> Union[TextGenerationOutput, Iterable[TextGenerationStreamOutput]]: ...
def text_generation(
self,
prompt: str,
*,
details: bool = False,
stream: bool = False,
model: Optional[str] = None,
# Parameters from `TextGenerationInputGenerateParameters` (maintained manually)
adapter_id: Optional[str] = None,
best_of: Optional[int] = None,
decoder_input_details: Optional[bool] = None,
do_sample: Optional[bool] = False, # Manual default value
frequency_penalty: Optional[float] = None,
grammar: Optional[TextGenerationInputGrammarType] = None,
max_new_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
return_full_text: Optional[bool] = False, # Manual default value
seed: Optional[int] = None,
stop: Optional[List[str]] = None,
stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_n_tokens: Optional[int] = None,
top_p: Optional[float] = None,
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: Optional[bool] = None,
) -> Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]:
"""
Given a prompt, generate the following text.
API endpoint is supposed to run with the `text-generation-inference` backend (TGI). This backend is the
go-to solution to run large language models at scale. However, for some smaller models (e.g. "gpt2") the
default `transformers` + `api-inference` solution is still in use. Both approaches have very similar APIs, but
not exactly the same. This method is compatible with both approaches but some parameters are only available for
`text-generation-inference`. If some parameters are ignored, a warning message is triggered but the process
continues correctly.
To learn more about the TGI project, please refer to https://github.com/huggingface/text-generation-inference.
<Tip>
If you want to generate a response from chat messages, you should use the [`InferenceClient.chat_completion`] method.
It accepts a list of messages instead of a single text prompt and handles the chat templating for you.
</Tip>
Args:
prompt (`str`):
Input text.
details (`bool`, *optional*):
By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens,
probabilities, seed, finish reason, etc.). Only available for models running on with the
`text-generation-inference` backend.
stream (`bool`, *optional*):
By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of
tokens to be returned. Only available for models running on with the `text-generation-inference`
backend.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
adapter_id (`str`, *optional*):
Lora adapter id.
best_of (`int`, *optional*):
Generate best_of sequences and return the one if the highest token logprobs.
decoder_input_details (`bool`, *optional*):
Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken
into account. Defaults to `False`.
do_sample (`bool`, *optional*):
Activate logits sampling
frequency_penalty (`float`, *optional*):
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in
the text so far, decreasing the model's likelihood to repeat the same line verbatim.
grammar ([`TextGenerationInputGrammarType`], *optional*):
Grammar constraints. Can be either a JSONSchema or a regex.
max_new_tokens (`int`, *optional*):
Maximum number of generated tokens. Defaults to 100.
repetition_penalty (`float`, *optional*):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
return_full_text (`bool`, *optional*):
Whether to prepend the prompt to the generated text
seed (`int`, *optional*):
Random sampling seed
stop (`List[str]`, *optional*):
Stop generating tokens if a member of `stop` is generated.
stop_sequences (`List[str]`, *optional*):
Deprecated argument. Use `stop` instead.
temperature (`float`, *optional*):
The value used to module the logits distribution.
top_n_tokens (`int`, *optional*):
Return information about the `top_n_tokens` most likely tokens at each generation step, instead of
just the sampled token.
top_k (`int`, *optional`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`, *optional`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
truncate (`int`, *optional`):
Truncate inputs tokens to the given size.
typical_p (`float`, *optional`):
Typical Decoding mass
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`, *optional`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Returns:
`Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]`:
Generated text returned from the server:
- if `stream=False` and `details=False`, the generated text is returned as a `str` (default)
- if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]`
- if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.TextGenerationOutput`]
- if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.TextGenerationStreamOutput`]
Raises:
`ValidationError`:
If input values are not valid. No HTTP call is made to the server.
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
# Case 1: generate text
>>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12)
'100% open source and built to be easy to use.'
# Case 2: iterate over the generated tokens. Useful for large generation.
>>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True):
... print(token)
100
%
open
source
and
built
to
be
easy
to
use
.
# Case 3: get more details about the generation process.
>>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True)
TextGenerationOutput(
generated_text='100% open source and built to be easy to use.',
details=TextGenerationDetails(
finish_reason='length',
generated_tokens=12,
seed=None,
prefill=[
TextGenerationPrefillOutputToken(id=487, text='The', logprob=None),
TextGenerationPrefillOutputToken(id=53789, text=' hugging', logprob=-13.171875),
(...)
TextGenerationPrefillOutputToken(id=204, text=' ', logprob=-7.0390625)
],
tokens=[
TokenElement(id=1425, text='100', logprob=-1.0175781, special=False),
TokenElement(id=16, text='%', logprob=-0.0463562, special=False),
(...)
TokenElement(id=25, text='.', logprob=-0.5703125, special=False)
],
best_of_sequences=None
)
)
# Case 4: iterate over the generated tokens with more details.
# Last object is more complete, containing the full generated text and the finish reason.
>>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True):
... print(details)
...
TextGenerationStreamOutput(token=TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None)
TextGenerationStreamOutput(token=TokenElement(
id=25,
text='.',
logprob=-0.5703125,
special=False),
generated_text='100% open source and built to be easy to use.',
details=TextGenerationStreamOutputStreamDetails(finish_reason='length', generated_tokens=12, seed=None)
)
# Case 5: generate constrained output using grammar
>>> response = client.text_generation(
... prompt="I saw a puppy a cat and a raccoon during my bike ride in the park",
... model="HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
... max_new_tokens=100,
... repetition_penalty=1.3,
... grammar={
... "type": "json",
... "value": {
... "properties": {
... "location": {"type": "string"},
... "activity": {"type": "string"},
... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5},
... "animals": {"type": "array", "items": {"type": "string"}},
... },
... "required": ["location", "activity", "animals_seen", "animals"],
... },
... },
... )
>>> json.loads(response)
{
"activity": "bike riding",
"animals": ["puppy", "cat", "raccoon"],
"animals_seen": 3,
"location": "park"
}
```
"""
if decoder_input_details and not details:
warnings.warn(
"`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that"
" the output from the server will be truncated."
)
decoder_input_details = False
if stop_sequences is not None:
warnings.warn(
"`stop_sequences` is a deprecated argument for `text_generation` task"
" and will be removed in version '0.28.0'. Use `stop` instead.",
FutureWarning,
)
if stop is None:
stop = stop_sequences # use deprecated arg if provided
# Build payload
parameters = {
"adapter_id": adapter_id,
"best_of": best_of,
"decoder_input_details": decoder_input_details,
"details": details,
"do_sample": do_sample,
"frequency_penalty": frequency_penalty,
"grammar": grammar,
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"return_full_text": return_full_text,
"seed": seed,
"stop": stop if stop is not None else [],
"temperature": temperature,
"top_k": top_k,
"top_n_tokens": top_n_tokens,
"top_p": top_p,
"truncate": truncate,
"typical_p": typical_p,
"watermark": watermark,
}
parameters = {k: v for k, v in parameters.items() if v is not None}
payload = {
"inputs": prompt,
"parameters": parameters,
"stream": stream,
}
# Remove some parameters if not a TGI server
unsupported_kwargs = _get_unsupported_text_generation_kwargs(model)
if len(unsupported_kwargs) > 0:
# The server does not support some parameters
# => means it is not a TGI server
# => remove unsupported parameters and warn the user
ignored_parameters = []
for key in unsupported_kwargs:
if parameters.get(key):
ignored_parameters.append(key)
parameters.pop(key, None)
if len(ignored_parameters) > 0:
warnings.warn(
"API endpoint/model for text-generation is not served via TGI. Ignoring following parameters:"
f" {', '.join(ignored_parameters)}.",
UserWarning,
)
if details:
warnings.warn(
"API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will"
" be ignored meaning only the generated text will be returned.",
UserWarning,
)
details = False
if stream:
raise ValueError(
"API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream."
" Please pass `stream=False` as input."
)
# Handle errors separately for more precise error messages
try:
bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream) # type: ignore
except HTTPError as e:
match = MODEL_KWARGS_NOT_USED_REGEX.search(str(e))
if isinstance(e, BadRequestError) and match:
unused_params = [kwarg.strip("' ") for kwarg in match.group(1).split(",")]
_set_unsupported_text_generation_kwargs(model, unused_params)
return self.text_generation( # type: ignore
prompt=prompt,
details=details,
stream=stream,
model=model,
adapter_id=adapter_id,
best_of=best_of,
decoder_input_details=decoder_input_details,
do_sample=do_sample,
frequency_penalty=frequency_penalty,
grammar=grammar,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=return_full_text,
seed=seed,
stop=stop,
temperature=temperature,
top_k=top_k,
top_n_tokens=top_n_tokens,
top_p=top_p,
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
)
raise_text_generation_error(e)
# Parse output
if stream:
return _stream_text_generation_response(bytes_output, details) # type: ignore
data = _bytes_to_dict(bytes_output) # type: ignore[arg-type]
# Data can be a single element (dict) or an iterable of dicts where we select the first element of.
if isinstance(data, list):
data = data[0]
return TextGenerationOutput.parse_obj_as_instance(data) if details else data["generated_text"]
def text_to_image(
self,
prompt: str,
*,
negative_prompt: Optional[List[str]] = None,
height: Optional[float] = None,
width: Optional[float] = None,
num_inference_steps: Optional[int] = None,
guidance_scale: Optional[float] = None,
model: Optional[str] = None,
scheduler: Optional[str] = None,
target_size: Optional[TextToImageTargetSize] = None,
seed: Optional[int] = None,
**kwargs,
) -> "Image":
"""
Generate an image based on a given text using a specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
prompt (`str`):
The prompt to generate an image from.
negative_prompt (`List[str`, *optional*):
One or several prompt to guide what NOT to include in image generation.
height (`float`, *optional*):
The height in pixels of the image to generate.
width (`float`, *optional*):
The width in pixels of the image to generate.
num_inference_steps (`int`, *optional*):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*):
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt, but values too high may cause saturation and other artifacts.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended text-to-image model will be used.
Defaults to None.
scheduler (`str`, *optional*):
Override the scheduler with a compatible one.
target_size (`TextToImageTargetSize`, *optional*):
The size in pixel of the output image
seed (`int`, *optional*):
Seed for the random number generator.
Returns:
`Image`: The generated image.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> image = client.text_to_image("An astronaut riding a horse on the moon.")
>>> image.save("astronaut.png")
>>> image = client.text_to_image(
... "An astronaut riding a horse on the moon.",
... negative_prompt="low resolution, blurry",
... model="stabilityai/stable-diffusion-2-1",
... )
>>> image.save("better_astronaut.png")
```
"""
parameters = {
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"scheduler": scheduler,
"target_size": target_size,
"seed": seed,
**kwargs,
}
payload = _prepare_payload(prompt, parameters=parameters)
response = self.post(**payload, model=model, task="text-to-image")
return _bytes_to_image(response)
def text_to_speech(
self,
text: str,
*,
model: Optional[str] = None,
do_sample: Optional[bool] = None,
early_stopping: Optional[Union[bool, "TextToSpeechEarlyStoppingEnum"]] = None,
epsilon_cutoff: Optional[float] = None,
eta_cutoff: Optional[float] = None,
max_length: Optional[int] = None,
max_new_tokens: Optional[int] = None,
min_length: Optional[int] = None,
min_new_tokens: Optional[int] = None,
num_beam_groups: Optional[int] = None,
num_beams: Optional[int] = None,
penalty_alpha: Optional[float] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
typical_p: Optional[float] = None,
use_cache: Optional[bool] = None,
) -> bytes:
"""
Synthesize an audio of a voice pronouncing a given text.
Args:
text (`str`):
The text to synthesize.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended text-to-speech model will be used.
Defaults to None.
do_sample (`bool`, *optional*):
Whether to use sampling instead of greedy decoding when generating new tokens.
early_stopping (`Union[bool, "TextToSpeechEarlyStoppingEnum"]`, *optional*):
Controls the stopping condition for beam-based methods.
epsilon_cutoff (`float`, *optional*):
If set to float strictly between 0 and 1, only tokens with a conditional probability greater than
epsilon_cutoff will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on
the size of the model. See [Truncation Sampling as Language Model
Desmoothing](https://hf.co/papers/2210.15191) for more details.
eta_cutoff (`float`, *optional*):
Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly
between 0 and 1, a token is only considered if it is greater than either eta_cutoff or sqrt(eta_cutoff)
* exp(-entropy(softmax(next_token_logits))). The latter term is intuitively the expected next token
probability, scaled by sqrt(eta_cutoff). In the paper, suggested values range from 3e-4 to 2e-3,
depending on the size of the model. See [Truncation Sampling as Language Model
Desmoothing](https://hf.co/papers/2210.15191) for more details.
max_length (`int`, *optional*):
The maximum length (in tokens) of the generated text, including the input.
max_new_tokens (`int`, *optional*):
The maximum number of tokens to generate. Takes precedence over max_length.
min_length (`int`, *optional*):
The minimum length (in tokens) of the generated text, including the input.
min_new_tokens (`int`, *optional*):
The minimum number of tokens to generate. Takes precedence over min_length.
num_beam_groups (`int`, *optional*):
Number of groups to divide num_beams into in order to ensure diversity among different groups of beams.
See [this paper](https://hf.co/papers/1610.02424) for more details.
num_beams (`int`, *optional*):
Number of beams to use for beam search.
penalty_alpha (`float`, *optional*):
The value balances the model confidence and the degeneration penalty in contrastive search decoding.
temperature (`float`, *optional*):
The value used to modulate the next token probabilities.
top_k (`int`, *optional*):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`, *optional*):
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to
top_p or higher are kept for generation.
typical_p (`float`, *optional*):
Local typicality measures how similar the conditional probability of predicting a target token next is
to the expected conditional probability of predicting a random token next, given the partial text
already generated. If set to float < 1, the smallest set of the most locally typical tokens with
probabilities that add up to typical_p or higher are kept for generation. See [this
paper](https://hf.co/papers/2202.00666) for more details.
use_cache (`bool`, *optional*):
Whether the model should use the past last key/values attentions to speed up decoding
Returns:
`bytes`: The generated audio.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from pathlib import Path
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> audio = client.text_to_speech("Hello world")
>>> Path("hello_world.flac").write_bytes(audio)
```
"""
parameters = {
"do_sample": do_sample,
"early_stopping": early_stopping,
"epsilon_cutoff": epsilon_cutoff,
"eta_cutoff": eta_cutoff,
"max_length": max_length,
"max_new_tokens": max_new_tokens,
"min_length": min_length,
"min_new_tokens": min_new_tokens,
"num_beam_groups": num_beam_groups,
"num_beams": num_beams,
"penalty_alpha": penalty_alpha,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"typical_p": typical_p,
"use_cache": use_cache,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(**payload, model=model, task="text-to-speech")
return response
def token_classification(
self,
text: str,
*,
model: Optional[str] = None,
aggregation_strategy: Optional["TokenClassificationAggregationStrategy"] = None,
ignore_labels: Optional[List[str]] = None,
stride: Optional[int] = None,
) -> List[TokenClassificationOutputElement]:
"""
Perform token classification on the given text.
Usually used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text.
Args:
text (`str`):
A string to be classified.
model (`str`, *optional*):
The model to use for the token classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended token classification model will be used.
Defaults to None.
aggregation_strategy (`"TokenClassificationAggregationStrategy"`, *optional*):
The strategy used to fuse tokens based on model predictions
ignore_labels (`List[str`, *optional*):
A list of labels to ignore
stride (`int`, *optional*):
The number of overlapping tokens between chunks when splitting the input text.
Returns:
`List[TokenClassificationOutputElement]`: List of [`TokenClassificationOutputElement`] items containing the entity group, confidence score, word, start and end index.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.token_classification("My name is Sarah Jessica Parker but you can call me Jessica")
[
TokenClassificationOutputElement(
entity_group='PER',
score=0.9971321225166321,
word='Sarah Jessica Parker',
start=11,
end=31,
),
TokenClassificationOutputElement(
entity_group='PER',
score=0.9773476123809814,
word='Jessica',
start=52,
end=59,
)
]
```
"""
parameters = {
"aggregation_strategy": aggregation_strategy,
"ignore_labels": ignore_labels,
"stride": stride,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(
**payload,
model=model,
task="token-classification",
)
return TokenClassificationOutputElement.parse_obj_as_list(response)
def translation(
self,
text: str,
*,
model: Optional[str] = None,
src_lang: Optional[str] = None,
tgt_lang: Optional[str] = None,
clean_up_tokenization_spaces: Optional[bool] = None,
truncation: Optional["TranslationTruncationStrategy"] = None,
generate_parameters: Optional[Dict[str, Any]] = None,
) -> TranslationOutput:
"""
Convert text from one language to another.
Check out https://huggingface.co/tasks/translation for more information on how to choose the best model for
your specific use case. Source and target languages usually depend on the model.
However, it is possible to specify source and target languages for certain models. If you are working with one of these models,
you can use `src_lang` and `tgt_lang` arguments to pass the relevant information.
Args:
text (`str`):
A string to be translated.
model (`str`, *optional*):
The model to use for the translation task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended translation model will be used.
Defaults to None.
src_lang (`str`, *optional*):
The source language of the text. Required for models that can translate from multiple languages.
tgt_lang (`str`, *optional*):
Target language to translate to. Required for models that can translate to multiple languages.
clean_up_tokenization_spaces (`bool`, *optional*):
Whether to clean up the potential extra spaces in the text output.
truncation (`"TranslationTruncationStrategy"`, *optional*):
The truncation strategy to use.
generate_parameters (`Dict[str, Any]`, *optional*):
Additional parametrization of the text generation algorithm.
Returns:
[`TranslationOutput`]: The generated translated text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
`ValueError`:
If only one of the `src_lang` and `tgt_lang` arguments are provided.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.translation("My name is Wolfgang and I live in Berlin")
'Mein Name ist Wolfgang und ich lebe in Berlin.'
>>> client.translation("My name is Wolfgang and I live in Berlin", model="Helsinki-NLP/opus-mt-en-fr")
TranslationOutput(translation_text='Je m'appelle Wolfgang et je vis à Berlin.')
```
Specifying languages:
```py
>>> client.translation("My name is Sarah Jessica Parker but you can call me Jessica", model="facebook/mbart-large-50-many-to-many-mmt", src_lang="en_XX", tgt_lang="fr_XX")
"Mon nom est Sarah Jessica Parker mais vous pouvez m'appeler Jessica"
```
"""
# Throw error if only one of `src_lang` and `tgt_lang` was given
if src_lang is not None and tgt_lang is None:
raise ValueError("You cannot specify `src_lang` without specifying `tgt_lang`.")
if src_lang is None and tgt_lang is not None:
raise ValueError("You cannot specify `tgt_lang` without specifying `src_lang`.")
parameters = {
"src_lang": src_lang,
"tgt_lang": tgt_lang,
"clean_up_tokenization_spaces": clean_up_tokenization_spaces,
"truncation": truncation,
"generate_parameters": generate_parameters,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(**payload, model=model, task="translation")
return TranslationOutput.parse_obj_as_list(response)[0]
def visual_question_answering(
self,
image: ContentT,
question: str,
*,
model: Optional[str] = None,
top_k: Optional[int] = None,
) -> List[VisualQuestionAnsweringOutputElement]:
"""
Answering open-ended questions based on an image.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image for the context. It can be raw bytes, an image file, or a URL to an online image.
question (`str`):
Question to be answered.
model (`str`, *optional*):
The model to use for the visual question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended visual question answering model will be used.
Defaults to None.
top_k (`int`, *optional*):
The number of answers to return (will be chosen by order of likelihood). Note that we return less than
topk answers if there are not enough options available within the context.
Returns:
`List[VisualQuestionAnsweringOutputElement]`: a list of [`VisualQuestionAnsweringOutputElement`] items containing the predicted label and associated probability.
Raises:
`InferenceTimeoutError`:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.visual_question_answering(
... image="https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg",
... question="What is the animal doing?"
... )
[
VisualQuestionAnsweringOutputElement(score=0.778609573841095, answer='laying down'),
VisualQuestionAnsweringOutputElement(score=0.6957435607910156, answer='sitting'),
]
```
"""
payload: Dict[str, Any] = {"question": question, "image": _b64_encode(image)}
if top_k is not None:
payload.setdefault("parameters", {})["top_k"] = top_k
response = self.post(json=payload, model=model, task="visual-question-answering")
return VisualQuestionAnsweringOutputElement.parse_obj_as_list(response)
@_deprecate_arguments(
version="0.30.0",
deprecated_args=["labels"],
custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.",
)
def zero_shot_classification(
self,
text: str,
# temporarily keeping it optional for backward compatibility.
candidate_labels: List[str] = None, # type: ignore
*,
multi_label: Optional[bool] = False,
hypothesis_template: Optional[str] = None,
model: Optional[str] = None,
# deprecated argument
labels: List[str] = None, # type: ignore
) -> List[ZeroShotClassificationOutputElement]:
"""
Provide as input a text and a set of candidate labels to classify the input text.
Args:
text (`str`):
The input text to classify.
candidate_labels (`List[str]`):
The set of possible class labels to classify the text into.
labels (`List[str]`, *optional*):
(deprecated) List of strings. Each string is the verbalization of a possible label for the input text.
multi_label (`bool`, *optional*):
Whether multiple candidate labels can be true. If false, the scores are normalized such that the sum of
the label likelihoods for each sequence is 1. If true, the labels are considered independent and
probabilities are normalized for each candidate.
hypothesis_template (`str`, *optional*):
The sentence used in conjunction with `candidate_labels` to attempt the text classification by
replacing the placeholder with the candidate labels.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot classification model will be used.
Returns:
`List[ZeroShotClassificationOutputElement]`: List of [`ZeroShotClassificationOutputElement`] items containing the predicted labels and their confidence.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example with `multi_label=False`:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> text = (
... "A new model offers an explanation for how the Galilean satellites formed around the solar system's"
... "largest world. Konstantin Batygin did not set out to solve one of the solar system's most puzzling"
... " mysteries when he went for a run up a hill in Nice, France."
... )
>>> labels = ["space & cosmos", "scientific discovery", "microbiology", "robots", "archeology"]
>>> client.zero_shot_classification(text, labels)
[
ZeroShotClassificationOutputElement(label='scientific discovery', score=0.7961668968200684),
ZeroShotClassificationOutputElement(label='space & cosmos', score=0.18570658564567566),
ZeroShotClassificationOutputElement(label='microbiology', score=0.00730885099619627),
ZeroShotClassificationOutputElement(label='archeology', score=0.006258360575884581),
ZeroShotClassificationOutputElement(label='robots', score=0.004559356719255447),
]
>>> client.zero_shot_classification(text, labels, multi_label=True)
[
ZeroShotClassificationOutputElement(label='scientific discovery', score=0.9829297661781311),
ZeroShotClassificationOutputElement(label='space & cosmos', score=0.755190908908844),
ZeroShotClassificationOutputElement(label='microbiology', score=0.0005462635890580714),
ZeroShotClassificationOutputElement(label='archeology', score=0.00047131875180639327),
ZeroShotClassificationOutputElement(label='robots', score=0.00030448526376858354),
]
```
Example with `multi_label=True` and a custom `hypothesis_template`:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.zero_shot_classification(
... text="I really like our dinner and I'm very happy. I don't like the weather though.",
... labels=["positive", "negative", "pessimistic", "optimistic"],
... multi_label=True,
... hypothesis_template="This text is {} towards the weather"
... )
[
ZeroShotClassificationOutputElement(label='negative', score=0.9231801629066467),
ZeroShotClassificationOutputElement(label='pessimistic', score=0.8760990500450134),
ZeroShotClassificationOutputElement(label='optimistic', score=0.0008674879791215062),
ZeroShotClassificationOutputElement(label='positive', score=0.0005250611575320363)
]
```
"""
# handle deprecation
if labels is not None:
if candidate_labels is not None:
raise ValueError(
"Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead."
)
candidate_labels = labels
elif candidate_labels is None:
raise ValueError("Must specify `candidate_labels`")
parameters = {
"candidate_labels": candidate_labels,
"multi_label": multi_label,
"hypothesis_template": hypothesis_template,
}
payload = _prepare_payload(text, parameters=parameters)
response = self.post(
**payload,
task="zero-shot-classification",
model=model,
)
output = _bytes_to_dict(response)
return [
ZeroShotClassificationOutputElement.parse_obj_as_instance({"label": label, "score": score})
for label, score in zip(output["labels"], output["scores"])
]
@_deprecate_arguments(
version="0.30.0",
deprecated_args=["labels"],
custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.",
)
def zero_shot_image_classification(
self,
image: ContentT,
# temporarily keeping it optional for backward compatibility.
candidate_labels: List[str] = None, # type: ignore
*,
model: Optional[str] = None,
hypothesis_template: Optional[str] = None,
# deprecated argument
labels: List[str] = None, # type: ignore
) -> List[ZeroShotImageClassificationOutputElement]:
"""
Provide input image and text labels to predict text labels for the image.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image to caption. It can be raw bytes, an image file, or a URL to an online image.
candidate_labels (`List[str]`):
The candidate labels for this image
labels (`List[str]`, *optional*):
(deprecated) List of string possible labels. There must be at least 2 labels.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot image classification model will be used.
hypothesis_template (`str`, *optional*):
The sentence used in conjunction with `candidate_labels` to attempt the image classification by
replacing the placeholder with the candidate labels.
Returns:
`List[ZeroShotImageClassificationOutputElement]`: List of [`ZeroShotImageClassificationOutputElement`] items containing the predicted labels and their confidence.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.zero_shot_image_classification(
... "https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg",
... labels=["dog", "cat", "horse"],
... )
[ZeroShotImageClassificationOutputElement(label='dog', score=0.956),...]
```
"""
# handle deprecation
if labels is not None:
if candidate_labels is not None:
raise ValueError(
"Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead."
)
candidate_labels = labels
elif candidate_labels is None:
raise ValueError("Must specify `candidate_labels`")
# Raise ValueError if input is less than 2 labels
if len(candidate_labels) < 2:
raise ValueError("You must specify at least 2 classes to compare.")
parameters = {
"candidate_labels": candidate_labels,
"hypothesis_template": hypothesis_template,
}
payload = _prepare_payload(image, parameters=parameters, expect_binary=True)
response = self.post(
**payload,
model=model,
task="zero-shot-image-classification",
)
return ZeroShotImageClassificationOutputElement.parse_obj_as_list(response)
def _resolve_url(self, model: Optional[str] = None, task: Optional[str] = None) -> str:
model = model or self.model or self.base_url
# If model is already a URL, ignore `task` and return directly
if model is not None and (model.startswith("http://") or model.startswith("https://")):
return model
# # If no model but task is set => fetch the recommended one for this task
if model is None:
if task is None:
raise ValueError(
"You must specify at least a model (repo_id or URL) or a task, either when instantiating"
" `InferenceClient` or when making a request."
)
model = self.get_recommended_model(task)
logger.info(
f"Using recommended model {model} for task {task}. Note that it is"
f" encouraged to explicitly set `model='{model}'` as the recommended"
" models list might get updated without prior notice."
)
# Compute InferenceAPI url
return (
# Feature-extraction and sentence-similarity are the only cases where we handle models with several tasks.
f"{INFERENCE_ENDPOINT}/pipeline/{task}/{model}"
if task in ("feature-extraction", "sentence-similarity")
# Otherwise, we use the default endpoint
else f"{INFERENCE_ENDPOINT}/models/{model}"
)
@staticmethod
def get_recommended_model(task: str) -> str:
"""
Get the model Hugging Face recommends for the input task.
Args:
task (`str`):
The Hugging Face task to get which model Hugging Face recommends.
All available tasks can be found [here](https://huggingface.co/tasks).
Returns:
`str`: Name of the model recommended for the input task.
Raises:
`ValueError`: If Hugging Face has no recommendation for the input task.
"""
model = _fetch_recommended_models().get(task)
if model is None:
raise ValueError(
f"Task {task} has no recommended model. Please specify a model"
" explicitly. Visit https://huggingface.co/tasks for more info."
)
return model
def get_endpoint_info(self, *, model: Optional[str] = None) -> Dict[str, Any]:
"""
Get information about the deployed endpoint.
This endpoint is only available on endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI).
Endpoints powered by `transformers` return an empty payload.
Args:
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`Dict[str, Any]`: Information about the endpoint.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
>>> client.get_endpoint_info()
{
'model_id': 'meta-llama/Meta-Llama-3-70B-Instruct',
'model_sha': None,
'model_dtype': 'torch.float16',
'model_device_type': 'cuda',
'model_pipeline_tag': None,
'max_concurrent_requests': 128,
'max_best_of': 2,
'max_stop_sequences': 4,
'max_input_length': 8191,
'max_total_tokens': 8192,
'waiting_served_ratio': 0.3,
'max_batch_total_tokens': 1259392,
'max_waiting_tokens': 20,
'max_batch_size': None,
'validation_workers': 32,
'max_client_batch_size': 4,
'version': '2.0.2',
'sha': 'dccab72549635c7eb5ddb17f43f0b7cdff07c214',
'docker_label': 'sha-dccab72'
}
```
"""
model = model or self.model
if model is None:
raise ValueError("Model id not provided.")
if model.startswith(("http://", "https://")):
url = model.rstrip("/") + "/info"
else:
url = f"{INFERENCE_ENDPOINT}/models/{model}/info"
response = get_session().get(url, headers=self.headers)
hf_raise_for_status(response)
return response.json()
def health_check(self, model: Optional[str] = None) -> bool:
"""
Check the health of the deployed endpoint.
Health check is only available with Inference Endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI).
For Inference API, please use [`InferenceClient.get_model_status`] instead.
Args:
model (`str`, *optional*):
URL of the Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`bool`: True if everything is working fine.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient("https://jzgu0buei5.us-east-1.aws.endpoints.huggingface.cloud")
>>> client.health_check()
True
```
"""
model = model or self.model
if model is None:
raise ValueError("Model id not provided.")
if not model.startswith(("http://", "https://")):
raise ValueError(
"Model must be an Inference Endpoint URL. For serverless Inference API, please use `InferenceClient.get_model_status`."
)
url = model.rstrip("/") + "/health"
response = get_session().get(url, headers=self.headers)
return response.status_code == 200
def get_model_status(self, model: Optional[str] = None) -> ModelStatus:
"""
Get the status of a model hosted on the Inference API.
<Tip>
This endpoint is mostly useful when you already know which model you want to use and want to check its
availability. If you want to discover already deployed models, you should rather use [`~InferenceClient.list_deployed_models`].
</Tip>
Args:
model (`str`, *optional*):
Identifier of the model for witch the status gonna be checked. If model is not provided,
the model associated with this instance of [`InferenceClient`] will be used. Only InferenceAPI service can be checked so the
identifier cannot be a URL.
Returns:
[`ModelStatus`]: An instance of ModelStatus dataclass, containing information,
about the state of the model: load, state, compute type and framework.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.get_model_status("meta-llama/Meta-Llama-3-8B-Instruct")
ModelStatus(loaded=True, state='Loaded', compute_type='gpu', framework='text-generation-inference')
```
"""
model = model or self.model
if model is None:
raise ValueError("Model id not provided.")
if model.startswith("https://"):
raise NotImplementedError("Model status is only available for Inference API endpoints.")
url = f"{INFERENCE_ENDPOINT}/status/{model}"
response = get_session().get(url, headers=self.headers)
hf_raise_for_status(response)
response_data = response.json()
if "error" in response_data:
raise ValueError(response_data["error"])
return ModelStatus(
loaded=response_data["loaded"],
state=response_data["state"],
compute_type=response_data["compute_type"],
framework=response_data["framework"],
)
@property
def chat(self) -> "ProxyClientChat":
return ProxyClientChat(self)
class _ProxyClient:
"""Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""
def __init__(self, client: InferenceClient):
self._client = client
class ProxyClientChat(_ProxyClient):
"""Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""
@property
def completions(self) -> "ProxyClientChatCompletions":
return ProxyClientChatCompletions(self._client)
class ProxyClientChatCompletions(_ProxyClient):
"""Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client."""
@property
def create(self):
return self._client.chat_completion
|