|
from turtle import title |
|
import gradio as gr |
|
from transformers import pipeline |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
pipes = { |
|
"ViT/B-16": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-base-patch16"), |
|
"ViT/L-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14"), |
|
"ViT/L-14@336px": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-large-patch14-336px"), |
|
"ViT/H-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-huge-patch14"), |
|
} |
|
inputs = [ |
|
gr.inputs.Image(type='pil'), |
|
"text", |
|
gr.inputs.Radio(choices=[ |
|
"ViT/B-16", |
|
"ViT/L-14", |
|
"ViT/L-14@336px", |
|
"ViT/H-14", |
|
], type="value", default="ViT/B-16", label="Model"), |
|
] |
|
images="festival.jpg" |
|
|
|
def shot(image, labels_text, model_name): |
|
labels = labels_text.strip(" ").split(",").strip(" ") |
|
res = pipes[model_name](images=image, |
|
candidate_labels=labels, |
|
hypothesis_template= "一张{}的图片。") |
|
return {dic["label"]: dic["score"] for dic in res} |
|
|
|
iface = gr.Interface(shot, |
|
inputs, |
|
"label", |
|
examples=[["festival.jpg", "灯笼, 鞭炮, 对联", "ViT/B-16"], |
|
["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16"], |
|
["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16"]], |
|
description="Add a picture and a list of labels separated by commas", |
|
title="Zero-shot Image Classification") |
|
|
|
iface.launch() |