Spaces:
Running
on
Zero
Running
on
Zero
Init
Browse files- README.md +5 -7
- app.py +361 -123
- demo/book.jpg +0 -0
- demo/horse.jpg +0 -0
- demo/statue.jpg +0 -0
- demo/t-shirt.jpg +0 -0
- ip_adapter/__init__.py +23 -0
- ip_adapter/__pycache__/__init__.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/custom_pipelines.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-310.pyc +0 -0
- ip_adapter/attention_processor.py +948 -0
- ip_adapter/custom_pipelines.py +805 -0
- ip_adapter/ip_adapter.py +1043 -0
- ip_adapter/resampler.py +247 -0
- ip_adapter/utils.py +140 -0
- omini_control/__init__.py +0 -0
- omini_control/__pycache__/__init__.cpython-310.pyc +0 -0
- omini_control/__pycache__/block.cpython-310.pyc +0 -0
- omini_control/__pycache__/concept_alignment.cpython-310.pyc +0 -0
- omini_control/__pycache__/conceptrol.cpython-310.pyc +0 -0
- omini_control/__pycache__/condition.cpython-310.pyc +0 -0
- omini_control/__pycache__/flux_conceptrol_pipeline.cpython-310.pyc +0 -0
- omini_control/__pycache__/lora_controller.cpython-310.pyc +0 -0
- omini_control/__pycache__/transformer.cpython-310.pyc +0 -0
- omini_control/block.py +354 -0
- omini_control/conceptrol.py +208 -0
- omini_control/condition.py +124 -0
- omini_control/flux_conceptrol_pipeline.py +368 -0
- omini_control/lora_controller.py +75 -0
- omini_control/transformer.py +273 -0
- requirements.txt +8 -5
- style.css +95 -0
- utils.py +212 -0
README.md
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
short_description: A free lunch eliciting personalized ability of adapters
|
12 |
---
|
13 |
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: PAID
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: pink
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.22.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,154 +1,392 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
}
|
|
|
|
|
|
|
|
|
65 |
"""
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
minimum=0.0,
|
123 |
-
maximum=
|
124 |
-
step=0.
|
125 |
-
value=0.
|
|
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
inputs=[
|
141 |
prompt,
|
|
|
142 |
negative_prompt,
|
143 |
-
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
149 |
],
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
)
|
|
|
152 |
|
153 |
-
|
154 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
from ip_adapter import (
|
9 |
+
ConceptrolIPAdapterPlus,
|
10 |
+
ConceptrolIPAdapterPlusXL,
|
11 |
+
)
|
12 |
+
from ip_adapter.custom_pipelines import (
|
13 |
+
StableDiffusionCustomPipeline,
|
14 |
+
StableDiffusionXLCustomPipeline,
|
15 |
+
)
|
16 |
+
from omini_control.conceptrol import Conceptrol
|
17 |
+
from omini_control.flux_conceptrol_pipeline import FluxConceptrolPipeline
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
21 |
|
22 |
+
title = r"""
|
23 |
+
<h1 align="center">Conceptrol: Concept Control of Zero-shot Personalized Image Generation</h1>
|
24 |
+
"""
|
25 |
+
|
26 |
+
description = r"""
|
27 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/QY-H00/Conceptrol/tree/public' target='_blank'><b>Conceptrol: Concept Control of Zero-shot Personalized Image Generation</b></a>.<br>
|
28 |
+
How to use:<br>
|
29 |
+
1. Input text prompt, visual specification and the textual concept of the personalized target.
|
30 |
+
2. Choose your preferrd base model, the first time for switching might take 30 minutes to download the model.
|
31 |
+
3. For each inference, SD-series takes about 10s, SDXL-series takes about 30s, FLUX takes about 50s.
|
32 |
+
4. Click the <b>Generate</b> button to enjoy! 😊
|
33 |
+
"""
|
34 |
+
|
35 |
+
article = r"""
|
36 |
+
---
|
37 |
+
✒️ **Citation**
|
38 |
+
<br>
|
39 |
+
If you found this demo/our paper useful, please consider citing:
|
40 |
+
```bibtex
|
41 |
+
@article{he2025conceptrol,
|
42 |
+
title={Conceptrol: Concept Control of Zero-shot Personalized Image Generation},
|
43 |
+
author={He, Qiyuan and Yao, Angela},
|
44 |
+
journal={arXiv preprint arXiv:2403.17924},
|
45 |
+
year={2024}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
+
```
|
48 |
+
📧 **Contact**
|
49 |
+
<br>
|
50 |
+
If you have any questions, please feel free to open an issue in our <a href='https://github.com/QY-H00/Conceptrol/tree/public' target='_blank'><b>Github Repo</b></a> or directly reach us out at <b>[email protected]</b>.
|
51 |
"""
|
52 |
|
53 |
+
MAX_SEED = np.iinfo(np.int32).max
|
54 |
+
CACHE_EXAMPLES = False
|
55 |
+
USE_TORCH_COMPILE = False
|
56 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
57 |
+
PREVIEW_IMAGES = False
|
58 |
|
59 |
+
# Default settings
|
60 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
adapter_name = "h94/IP-Adapter/models/ip-adapter-plus_sd15.bin"
|
62 |
+
pipe = StableDiffusionCustomPipeline.from_pretrained(
|
63 |
+
"SG161222/Realistic_Vision_V5.1_noVAE",
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
feature_extractor=None,
|
66 |
+
safety_checker=None
|
67 |
+
)
|
68 |
+
pipeline = ConceptrolIPAdapterPlus(pipe, "", adapter_name, device, num_tokens=16)
|
69 |
|
70 |
+
def change_model_fn(model_name: str) -> None:
|
71 |
+
global device, pipeline
|
72 |
+
|
73 |
+
# Clear GPU memory
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
if pipeline is not None:
|
76 |
+
del pipeline
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
|
79 |
+
name_mapping = {
|
80 |
+
"SD1.5-512": "stable-diffusion-v1-5/stable-diffusion-v1-5",
|
81 |
+
"AOM3 (SD-based)": "hogiahien/aom3",
|
82 |
+
"RealVis-v5.1 (SD-based)": "SG161222/Realistic_Vision_V5.1_noVAE",
|
83 |
+
"SDXL-1024": "stabilityai/stable-diffusion-xl-base-1.0",
|
84 |
+
"RealVisXL-v5.0 (SDXL-based)": "SG161222/RealVisXL_V5.0",
|
85 |
+
"Playground-XL-v2 (SDXL-based)": "playgroundai/playground-v2.5-1024px-aesthetic",
|
86 |
+
"Animagine-XL-v4.0 (SDXL-based)": "cagliostrolab/animagine-xl-4.0",
|
87 |
+
"FLUX-schnell": "black-forest-labs/FLUX.1-schnell"
|
88 |
+
}
|
89 |
+
if "XL" in model_name:
|
90 |
+
adapter_name = "h94/IP-Adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.safetensors"
|
91 |
+
pipe = StableDiffusionXLCustomPipeline.from_pretrained(
|
92 |
+
name_mapping[model_name],
|
93 |
+
# variant="fp16",
|
94 |
+
torch_dtype=torch.float16,
|
95 |
+
feature_extractor=None
|
96 |
+
)
|
97 |
+
pipeline = ConceptrolIPAdapterPlusXL(pipe, "", adapter_name, device, num_tokens=16)
|
98 |
+
globals()["pipeline"] = pipeline
|
99 |
+
|
100 |
+
elif "FLUX" in model_name:
|
101 |
+
adapter_name = "Yuanshi/OminiControl"
|
102 |
+
pipeline = FluxConceptrolPipeline.from_pretrained(
|
103 |
+
name_mapping[model_name], torch_dtype=torch.bfloat16
|
104 |
+
).to(device)
|
105 |
+
pipeline.load_lora_weights(
|
106 |
+
adapter_name,
|
107 |
+
weight_name="omini/subject_512.safetensors",
|
108 |
+
adapter_name="subject",
|
109 |
+
)
|
110 |
+
config = {"name": "conceptrol"}
|
111 |
+
conceptrol = Conceptrol(config)
|
112 |
+
pipeline.load_conceptrol(conceptrol)
|
113 |
+
globals()["pipeline"] = pipeline
|
114 |
+
globals()["pipeline"].to(device, dtype=torch.bfloat16)
|
115 |
+
|
116 |
+
elif "XL" not in model_name and "FLUX" not in model_name:
|
117 |
+
adapter_name = "h94/IP-Adapter/models/ip-adapter-plus_sd15.bin"
|
118 |
+
pipe = StableDiffusionCustomPipeline.from_pretrained(
|
119 |
+
name_mapping[model_name],
|
120 |
+
torch_dtype=torch.float16,
|
121 |
+
feature_extractor=None,
|
122 |
+
safety_checker=None
|
123 |
+
)
|
124 |
+
pipeline = ConceptrolIPAdapterPlus(pipe, "", adapter_name, device, num_tokens=16)
|
125 |
+
globals()["pipeline"] = pipeline
|
126 |
+
else:
|
127 |
+
raise KeyError("Not supported model name!")
|
128 |
|
|
|
129 |
|
130 |
+
def save_image(img, index):
|
131 |
+
unique_name = f"{index}.png"
|
132 |
+
img = Image.fromarray(img)
|
133 |
+
img.save(unique_name)
|
134 |
+
return unique_name
|
|
|
|
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
def get_example() -> list[list[str | float | int]]:
|
138 |
+
case = [
|
139 |
+
[
|
140 |
+
"A statue is reading the book in the cafe, best quality, high quality",
|
141 |
+
"statue",
|
142 |
+
"deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
|
143 |
+
Image.open("demo/statue.jpg"),
|
144 |
+
50,
|
145 |
+
6.0,
|
146 |
+
1.0,
|
147 |
+
0.2,
|
148 |
+
42,
|
149 |
+
"RealVis-v5.1 (SD-based)"
|
150 |
+
],
|
151 |
+
[
|
152 |
+
"A hyper-realistic, high-resolution photograph of an astronaut in a meticulously detailed space suit riding a majestic horse across an otherworldly landscape. The image features dynamic lighting, rich textures, and a cinematic atmosphere, capturing every intricate detail in stunning clarity.",
|
153 |
+
"horse",
|
154 |
+
"deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
|
155 |
+
Image.open("demo/horse.jpg"),
|
156 |
+
50,
|
157 |
+
6.0,
|
158 |
+
1.0,
|
159 |
+
0.2,
|
160 |
+
42,
|
161 |
+
"RealVisXL-v5.0 (SDXL-based)"
|
162 |
+
],
|
163 |
+
[
|
164 |
+
"A man wearing a T-shirt walking on the street",
|
165 |
+
"T-shirt",
|
166 |
+
"",
|
167 |
+
Image.open("demo/t-shirt.jpg"),
|
168 |
+
20,
|
169 |
+
3.5,
|
170 |
+
1.0,
|
171 |
+
0.0,
|
172 |
+
42,
|
173 |
+
"FLUX-schnell"
|
174 |
+
]
|
175 |
+
]
|
176 |
+
return case
|
177 |
+
|
178 |
+
|
179 |
+
def change_generate_button_fn(enable: int) -> gr.Button:
|
180 |
+
if enable == 0:
|
181 |
+
return gr.Button(interactive=False, value="Switching Model...")
|
182 |
+
else:
|
183 |
+
return gr.Button(interactive=True, value="Generate")
|
184 |
+
|
185 |
+
|
186 |
+
def dynamic_gallery_fn():
|
187 |
+
return gr.Image(label="Result", show_label=False)
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
@torch.no_grad()
|
191 |
+
def generate(
|
192 |
+
prompt="a statue is reading the book in the cafe",
|
193 |
+
subject="cat",
|
194 |
+
negative_prompt="",
|
195 |
+
image=None,
|
196 |
+
num_inference_steps=20,
|
197 |
+
guidance_scale=3.5,
|
198 |
+
condition_scale=1.0,
|
199 |
+
control_guidance_start=0.0,
|
200 |
+
seed=0,
|
201 |
+
model_name="RealVis-v5.1 (SD-based)"
|
202 |
+
) -> np.ndarray:
|
203 |
+
global pipeline
|
204 |
+
change_model_fn(model_name)
|
205 |
+
if isinstance(pipeline, FluxConceptrolPipeline):
|
206 |
+
images = pipeline(
|
207 |
+
prompt=prompt,
|
208 |
+
image=image,
|
209 |
+
subject=subject,
|
210 |
+
num_inference_steps=num_inference_steps,
|
211 |
+
guidance_scale=guidance_scale,
|
212 |
+
condition_scale=condition_scale,
|
213 |
+
control_guidance_start=control_guidance_start,
|
214 |
+
height=512,
|
215 |
+
width=512,
|
216 |
+
seed=seed,
|
217 |
+
).images[0]
|
218 |
+
elif isinstance(pipeline, ConceptrolIPAdapterPlus) or isinstance(pipeline, ConceptrolIPAdapterPlusXL):
|
219 |
+
images = pipeline.generate(
|
220 |
+
prompt=prompt,
|
221 |
+
pil_images=[image],
|
222 |
+
subjects=[subject],
|
223 |
+
num_samples=1,
|
224 |
+
num_inference_steps=50,
|
225 |
+
scale=condition_scale,
|
226 |
+
negative_prompt=negative_prompt,
|
227 |
+
control_guidance_start=control_guidance_start,
|
228 |
+
seed=seed,
|
229 |
+
)[0]
|
230 |
+
else:
|
231 |
+
raise TypeError("Unsupported Pipeline")
|
232 |
+
|
233 |
+
return images
|
234 |
+
|
235 |
+
with gr.Blocks(css="style.css") as demo:
|
236 |
+
gr.Markdown(title)
|
237 |
+
gr.Markdown(description)
|
238 |
+
with gr.Row(elem_classes="grid-container"):
|
239 |
+
with gr.Group():
|
240 |
+
with gr.Row(elem_classes="flex-grow"):
|
241 |
+
with gr.Column(elem_classes="grid-item"): # 左侧列
|
242 |
+
prompt = gr.Text(
|
243 |
+
label="Prompt",
|
244 |
+
max_lines=3,
|
245 |
+
placeholder="Enter the Descriptive Prompt",
|
246 |
+
interactive=True,
|
247 |
+
value="A statue is reading the book in the cafe, best quality, high quality",
|
248 |
+
)
|
249 |
+
textual_concept = gr.Text(
|
250 |
+
label="Textual Concept",
|
251 |
+
max_lines=3,
|
252 |
+
placeholder="Enter the Textual Concept required customization",
|
253 |
+
interactive=True,
|
254 |
+
value="statue",
|
255 |
+
)
|
256 |
+
negative_prompt = gr.Text(
|
257 |
+
label="Negative prompt",
|
258 |
+
max_lines=3,
|
259 |
+
placeholder="Enter a Negative Prompt",
|
260 |
+
interactive=True,
|
261 |
+
value="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality"
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Row(elem_classes="flex-grow"):
|
265 |
+
image_prompt = gr.Image(
|
266 |
+
label="Reference Image for customization",
|
267 |
+
interactive=True,
|
268 |
+
height=280
|
269 |
)
|
270 |
+
|
271 |
|
272 |
+
with gr.Group():
|
273 |
+
with gr.Column(elem_classes="grid-item"): # 右侧列
|
274 |
+
with gr.Row(elem_classes="flex-grow"):
|
275 |
+
|
276 |
+
with gr.Group():
|
277 |
+
# result = gr.Gallery(label="Result", show_label=False, rows=1, columns=1)
|
278 |
+
result = gr.Image(label="Result", show_label=False, height=238, width=256)
|
279 |
+
generate_button = gr.Button(value="Generate", variant="primary")
|
280 |
+
|
281 |
+
with gr.Accordion("Advanced options", open=True):
|
282 |
+
with gr.Row():
|
283 |
+
with gr.Column():
|
284 |
+
# with gr.Row(elem_classes="flex-grow"):
|
285 |
+
model_choice = gr.Dropdown(
|
286 |
+
[
|
287 |
+
"AOM3 (SD-based)",
|
288 |
+
"SD1.5-512",
|
289 |
+
"RealVis-v5.1 (SD-based)",
|
290 |
+
"SDXL-1024",
|
291 |
+
"RealVisXL-v5.0 (SDXL-based)",
|
292 |
+
"Animagine-XL-v4.0 (SDXL-based)",
|
293 |
+
"FLUX-schnell"
|
294 |
+
],
|
295 |
+
label="Model",
|
296 |
+
value="RealVis-v5.1 (SD-based)",
|
297 |
+
interactive=True,
|
298 |
+
info="XL-Series takes longer time and FLUX takes even more",
|
299 |
+
)
|
300 |
+
condition_scale = gr.Slider(
|
301 |
+
label="Condition Scale of Reference Image",
|
302 |
+
minimum=0.4,
|
303 |
+
maximum=1.5,
|
304 |
+
step=0.05,
|
305 |
+
value=1.0,
|
306 |
+
interactive=True,
|
307 |
+
)
|
308 |
+
warmup_ratio = gr.Slider(
|
309 |
+
label="Warmup Ratio",
|
310 |
minimum=0.0,
|
311 |
+
maximum=1,
|
312 |
+
step=0.05,
|
313 |
+
value=0.2,
|
314 |
+
interactive=True,
|
315 |
)
|
316 |
+
guidance_scale = gr.Slider(
|
317 |
+
label="Guidance Scale",
|
318 |
+
minimum=0,
|
319 |
+
maximum=10,
|
320 |
+
step=0.1,
|
321 |
+
value=5.0,
|
322 |
+
interactive=True,
|
323 |
)
|
324 |
+
num_inference_steps = gr.Slider(
|
325 |
+
label="Inference Steps",
|
326 |
+
minimum=10,
|
327 |
+
maximum=50,
|
328 |
+
step=1,
|
329 |
+
value=50,
|
330 |
+
interactive=True,
|
331 |
+
)
|
332 |
+
with gr.Column():
|
333 |
+
seed = gr.Slider(
|
334 |
+
label="Seed",
|
335 |
+
minimum=0,
|
336 |
+
maximum=MAX_SEED,
|
337 |
+
step=1,
|
338 |
+
value=0,
|
339 |
+
)
|
340 |
|
341 |
+
gr.Examples(
|
342 |
+
examples=get_example(),
|
|
|
|
|
343 |
inputs=[
|
344 |
prompt,
|
345 |
+
textual_concept,
|
346 |
negative_prompt,
|
347 |
+
image_prompt,
|
|
|
|
|
|
|
|
|
348 |
num_inference_steps,
|
349 |
+
guidance_scale,
|
350 |
+
condition_scale,
|
351 |
+
warmup_ratio,
|
352 |
+
seed,
|
353 |
+
model_choice
|
354 |
],
|
355 |
+
cache_examples=CACHE_EXAMPLES,
|
356 |
+
)
|
357 |
+
|
358 |
+
# model_choice.change(
|
359 |
+
# fn=change_generate_button_fn,
|
360 |
+
# inputs=gr.Number(0, visible=False),
|
361 |
+
# outputs=generate_button,
|
362 |
+
# )
|
363 |
+
|
364 |
+
# .then(fn=change_model_fn, inputs=model_choice).then(
|
365 |
+
# fn=change_generate_button_fn,
|
366 |
+
# inputs=gr.Number(1, visible=False),
|
367 |
+
# outputs=generate_button,
|
368 |
+
# )
|
369 |
+
|
370 |
+
inputs = [
|
371 |
+
prompt,
|
372 |
+
textual_concept,
|
373 |
+
negative_prompt,
|
374 |
+
image_prompt,
|
375 |
+
num_inference_steps,
|
376 |
+
guidance_scale,
|
377 |
+
condition_scale,
|
378 |
+
warmup_ratio,
|
379 |
+
seed,
|
380 |
+
model_choice
|
381 |
+
]
|
382 |
+
generate_button.click(
|
383 |
+
fn=dynamic_gallery_fn,
|
384 |
+
outputs=result,
|
385 |
+
).then(
|
386 |
+
fn=generate,
|
387 |
+
inputs=inputs,
|
388 |
+
outputs=result,
|
389 |
)
|
390 |
+
gr.Markdown(article)
|
391 |
|
392 |
+
demo.launch()
|
|
demo/book.jpg
ADDED
![]() |
demo/horse.jpg
ADDED
![]() |
demo/statue.jpg
ADDED
![]() |
demo/t-shirt.jpg
ADDED
![]() |
ip_adapter/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ip_adapter import (
|
2 |
+
IPAdapter,
|
3 |
+
IPAdapterFull,
|
4 |
+
IPAdapterPlus,
|
5 |
+
IPAdapterPlusXL,
|
6 |
+
IPAdapterXL,
|
7 |
+
ConceptrolIPAdapter,
|
8 |
+
ConceptrolIPAdapterPlus,
|
9 |
+
ConceptrolIPAdapterPlusXL,
|
10 |
+
ConceptrolIPAdapterXL,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"IPAdapter",
|
15 |
+
"IPAdapterPlus",
|
16 |
+
"IPAdapterPlusXL",
|
17 |
+
"IPAdapterXL",
|
18 |
+
"IPAdapterFull",
|
19 |
+
"ConceptrolIPAdapter",
|
20 |
+
"ConceptrolIPAdapterPlus",
|
21 |
+
"ConceptrolIPAdapterXL",
|
22 |
+
"ConceptrolIPAdapterPlusXL",
|
23 |
+
]
|
ip_adapter/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (488 Bytes). View file
|
|
ip_adapter/__pycache__/attention_processor.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
ip_adapter/__pycache__/custom_pipelines.cpython-310.pyc
ADDED
Binary file (28.9 kB). View file
|
|
ip_adapter/__pycache__/ip_adapter.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
ip_adapter/__pycache__/resampler.cpython-310.pyc
ADDED
Binary file (5.62 kB). View file
|
|
ip_adapter/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.67 kB). View file
|
|
ip_adapter/attention_processor.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
# Global Variable
|
7 |
+
global_concept_mask = []
|
8 |
+
attn_mask_logs = {}
|
9 |
+
text_attn_map_logs = {}
|
10 |
+
image_attn_map_logs = {}
|
11 |
+
|
12 |
+
|
13 |
+
class AttnProcessor(nn.Module):
|
14 |
+
r"""
|
15 |
+
Default processor for performing attention-related computations.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
hidden_size=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
def __call__(
|
26 |
+
self,
|
27 |
+
attn,
|
28 |
+
hidden_states,
|
29 |
+
encoder_hidden_states=None,
|
30 |
+
attention_mask=None,
|
31 |
+
temb=None,
|
32 |
+
*args,
|
33 |
+
**kwargs,
|
34 |
+
):
|
35 |
+
residual = hidden_states
|
36 |
+
|
37 |
+
if attn.spatial_norm is not None:
|
38 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
39 |
+
|
40 |
+
input_ndim = hidden_states.ndim
|
41 |
+
|
42 |
+
if input_ndim == 4:
|
43 |
+
batch_size, channel, height, width = hidden_states.shape
|
44 |
+
hidden_states = hidden_states.view(
|
45 |
+
batch_size, channel, height * width
|
46 |
+
).transpose(1, 2)
|
47 |
+
|
48 |
+
batch_size, sequence_length, _ = (
|
49 |
+
hidden_states.shape
|
50 |
+
if encoder_hidden_states is None
|
51 |
+
else encoder_hidden_states.shape
|
52 |
+
)
|
53 |
+
attention_mask = attn.prepare_attention_mask(
|
54 |
+
attention_mask, sequence_length, batch_size
|
55 |
+
)
|
56 |
+
|
57 |
+
if attn.group_norm is not None:
|
58 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
59 |
+
1, 2
|
60 |
+
)
|
61 |
+
|
62 |
+
query = attn.to_q(hidden_states)
|
63 |
+
|
64 |
+
if encoder_hidden_states is None:
|
65 |
+
encoder_hidden_states = hidden_states
|
66 |
+
elif attn.norm_cross:
|
67 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
68 |
+
encoder_hidden_states
|
69 |
+
)
|
70 |
+
|
71 |
+
key = attn.to_k(encoder_hidden_states)
|
72 |
+
value = attn.to_v(encoder_hidden_states)
|
73 |
+
|
74 |
+
query = attn.head_to_batch_dim(query)
|
75 |
+
key = attn.head_to_batch_dim(key)
|
76 |
+
value = attn.head_to_batch_dim(value)
|
77 |
+
|
78 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
79 |
+
hidden_states = torch.bmm(attention_probs, value)
|
80 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
81 |
+
|
82 |
+
# linear proj
|
83 |
+
hidden_states = attn.to_out[0](hidden_states)
|
84 |
+
# dropout
|
85 |
+
hidden_states = attn.to_out[1](hidden_states)
|
86 |
+
|
87 |
+
if input_ndim == 4:
|
88 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
89 |
+
batch_size, channel, height, width
|
90 |
+
)
|
91 |
+
|
92 |
+
if attn.residual_connection:
|
93 |
+
hidden_states = hidden_states + residual
|
94 |
+
|
95 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
96 |
+
|
97 |
+
return hidden_states
|
98 |
+
|
99 |
+
|
100 |
+
class IPAttnProcessor(nn.Module):
|
101 |
+
r"""
|
102 |
+
Attention processor for IP-Adapater.
|
103 |
+
Args:
|
104 |
+
hidden_size (`int`):
|
105 |
+
The hidden size of the attention layer.
|
106 |
+
cross_attention_dim (`int`):
|
107 |
+
The number of channels in the `encoder_hidden_states`.
|
108 |
+
scale (`float`, defaults to 1.0):
|
109 |
+
the weight scale of image prompt.
|
110 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
111 |
+
The context length of the image features.
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
self.hidden_size = hidden_size
|
118 |
+
self.cross_attention_dim = cross_attention_dim
|
119 |
+
self.scale = scale
|
120 |
+
self.num_tokens = num_tokens
|
121 |
+
|
122 |
+
self.to_k_ip = nn.Linear(
|
123 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
124 |
+
)
|
125 |
+
self.to_v_ip = nn.Linear(
|
126 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
127 |
+
)
|
128 |
+
|
129 |
+
def __call__(
|
130 |
+
self,
|
131 |
+
attn,
|
132 |
+
hidden_states,
|
133 |
+
encoder_hidden_states=None,
|
134 |
+
attention_mask=None,
|
135 |
+
temb=None,
|
136 |
+
*args,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
global global_concept_mask
|
140 |
+
global attn_mask_logs
|
141 |
+
global text_attn_map_logs
|
142 |
+
global image_attn_map_logs
|
143 |
+
residual = hidden_states
|
144 |
+
|
145 |
+
if attn.spatial_norm is not None:
|
146 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
147 |
+
|
148 |
+
input_ndim = hidden_states.ndim
|
149 |
+
|
150 |
+
if input_ndim == 4:
|
151 |
+
batch_size, channel, height, width = hidden_states.shape
|
152 |
+
hidden_states = hidden_states.view(
|
153 |
+
batch_size, channel, height * width
|
154 |
+
).transpose(1, 2)
|
155 |
+
|
156 |
+
batch_size, sequence_length, _ = (
|
157 |
+
hidden_states.shape
|
158 |
+
if encoder_hidden_states is None
|
159 |
+
else encoder_hidden_states.shape
|
160 |
+
)
|
161 |
+
attention_mask = attn.prepare_attention_mask(
|
162 |
+
attention_mask, sequence_length, batch_size
|
163 |
+
)
|
164 |
+
|
165 |
+
if attn.group_norm is not None:
|
166 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
167 |
+
1, 2
|
168 |
+
)
|
169 |
+
|
170 |
+
query = attn.to_q(hidden_states)
|
171 |
+
|
172 |
+
if encoder_hidden_states is None:
|
173 |
+
encoder_hidden_states = hidden_states
|
174 |
+
else:
|
175 |
+
# get encoder_hidden_states, ip_hidden_states
|
176 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
177 |
+
encoder_hidden_states, ip_hidden_states = (
|
178 |
+
encoder_hidden_states[:, :end_pos, :],
|
179 |
+
encoder_hidden_states[:, end_pos:, :],
|
180 |
+
)
|
181 |
+
if attn.norm_cross:
|
182 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
183 |
+
encoder_hidden_states
|
184 |
+
)
|
185 |
+
|
186 |
+
key = attn.to_k(encoder_hidden_states)
|
187 |
+
value = attn.to_v(encoder_hidden_states)
|
188 |
+
|
189 |
+
query = attn.head_to_batch_dim(query)
|
190 |
+
key = attn.head_to_batch_dim(key)
|
191 |
+
value = attn.head_to_batch_dim(value)
|
192 |
+
|
193 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
194 |
+
hidden_states = torch.bmm(attention_probs, value)
|
195 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
196 |
+
|
197 |
+
# for ip-adapter
|
198 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
199 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
200 |
+
|
201 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
202 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
203 |
+
|
204 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
205 |
+
self.attn_map = ip_attention_probs
|
206 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
207 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
208 |
+
|
209 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
210 |
+
|
211 |
+
# linear proj
|
212 |
+
hidden_states = attn.to_out[0](hidden_states)
|
213 |
+
# dropout
|
214 |
+
hidden_states = attn.to_out[1](hidden_states)
|
215 |
+
|
216 |
+
if input_ndim == 4:
|
217 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
218 |
+
batch_size, channel, height, width
|
219 |
+
)
|
220 |
+
|
221 |
+
if attn.residual_connection:
|
222 |
+
hidden_states = hidden_states + residual
|
223 |
+
|
224 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
225 |
+
|
226 |
+
return hidden_states
|
227 |
+
|
228 |
+
|
229 |
+
class ConceptrolAttnProcessor(nn.Module):
|
230 |
+
r"""
|
231 |
+
Attention processor for IP-Adapater.
|
232 |
+
Args:
|
233 |
+
hidden_size (`int`):
|
234 |
+
The hidden size of the attention layer.
|
235 |
+
cross_attention_dim (`int`):
|
236 |
+
The number of channels in the `encoder_hidden_states`.
|
237 |
+
scale (`float`, defaults to 1.0):
|
238 |
+
the weight scale of image prompt.
|
239 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
240 |
+
The context length of the image features.
|
241 |
+
"""
|
242 |
+
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
hidden_size,
|
246 |
+
cross_attention_dim=None,
|
247 |
+
scale=1.0,
|
248 |
+
num_tokens=4,
|
249 |
+
textual_concept_idxs=None,
|
250 |
+
name=None,
|
251 |
+
global_masking=False,
|
252 |
+
adaptive_scale_mask=False,
|
253 |
+
concept_mask_layer=None,
|
254 |
+
):
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
self.hidden_size = hidden_size
|
258 |
+
self.cross_attention_dim = cross_attention_dim
|
259 |
+
self.scale = scale
|
260 |
+
self.num_tokens = num_tokens
|
261 |
+
|
262 |
+
self.textual_concept_idxs = textual_concept_idxs
|
263 |
+
self.name = name
|
264 |
+
|
265 |
+
self.to_k_ip = nn.Linear(
|
266 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
267 |
+
)
|
268 |
+
self.to_v_ip = nn.Linear(
|
269 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
270 |
+
)
|
271 |
+
|
272 |
+
self.global_masking = global_masking
|
273 |
+
self.adaptive_scale_mask = adaptive_scale_mask
|
274 |
+
|
275 |
+
if concept_mask_layer is None:
|
276 |
+
concept_mask_layer = [
|
277 |
+
"mid_block.attentions.0.transformer_blocks.0.attn2.processor"
|
278 |
+
] # For SD
|
279 |
+
print("Warning: Using default concept mask layer for SD. For SDXL, use 'up_blocks.0.attentions.1.transformer_blocks.5.attn2.processor'")
|
280 |
+
# concept_mask_layer = ['up_blocks.0.attentions.1.transformer_blocks.1.attn2.processor'] # For SDXL
|
281 |
+
self.concept_mask_layer = concept_mask_layer
|
282 |
+
|
283 |
+
def set_global_view(self, attn_procs):
|
284 |
+
self.attn_procs = attn_procs
|
285 |
+
# print(self.name, self.attn_procs.keys())
|
286 |
+
|
287 |
+
def __call__(
|
288 |
+
self,
|
289 |
+
attn,
|
290 |
+
hidden_states,
|
291 |
+
encoder_hidden_states=None,
|
292 |
+
attention_mask=None,
|
293 |
+
temb=None,
|
294 |
+
*args,
|
295 |
+
**kwargs,
|
296 |
+
):
|
297 |
+
global global_concept_mask
|
298 |
+
global attn_mask_logs
|
299 |
+
|
300 |
+
if self.textual_concept_idxs is None:
|
301 |
+
raise ValueError(
|
302 |
+
"textual_concept_idxs should be provided for ConceptrolAttnProcessor"
|
303 |
+
)
|
304 |
+
residual = hidden_states
|
305 |
+
|
306 |
+
if attn.spatial_norm is not None:
|
307 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
308 |
+
|
309 |
+
input_ndim = hidden_states.ndim
|
310 |
+
|
311 |
+
if input_ndim == 4:
|
312 |
+
batch_size, channel, height, width = hidden_states.shape
|
313 |
+
hidden_states = hidden_states.view(
|
314 |
+
batch_size, channel, height * width
|
315 |
+
).transpose(1, 2)
|
316 |
+
|
317 |
+
batch_size, sequence_length, _ = (
|
318 |
+
hidden_states.shape
|
319 |
+
if encoder_hidden_states is None
|
320 |
+
else encoder_hidden_states.shape
|
321 |
+
)
|
322 |
+
attention_mask = attn.prepare_attention_mask(
|
323 |
+
attention_mask, sequence_length, batch_size
|
324 |
+
)
|
325 |
+
|
326 |
+
if attn.group_norm is not None:
|
327 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
328 |
+
1, 2
|
329 |
+
)
|
330 |
+
|
331 |
+
query = attn.to_q(hidden_states)
|
332 |
+
|
333 |
+
if encoder_hidden_states is None:
|
334 |
+
encoder_hidden_states = hidden_states
|
335 |
+
else:
|
336 |
+
# get encoder_hidden_states, ip_hidden_states
|
337 |
+
end_pos = 77 # Both SD and SDXL use 77 as length of text tokens
|
338 |
+
encoder_hidden_states, ip_hidden_states_cat = (
|
339 |
+
encoder_hidden_states[:, :end_pos, :],
|
340 |
+
encoder_hidden_states[:, end_pos:, :],
|
341 |
+
)
|
342 |
+
num_concepts = ip_hidden_states_cat.shape[1] // self.num_tokens
|
343 |
+
ip_hidden_states_list = torch.chunk(
|
344 |
+
ip_hidden_states_cat, num_concepts, dim=1
|
345 |
+
)
|
346 |
+
assert len(ip_hidden_states_list) == len(
|
347 |
+
self.textual_concept_idxs
|
348 |
+
), f"register_idxs should have the same length as the number of concepts, but got {len(ip_hidden_states_list)} and {len(self.textual_concept_idxs)}"
|
349 |
+
if attn.norm_cross:
|
350 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
351 |
+
encoder_hidden_states
|
352 |
+
)
|
353 |
+
|
354 |
+
key = attn.to_k(encoder_hidden_states)
|
355 |
+
value = attn.to_v(encoder_hidden_states)
|
356 |
+
|
357 |
+
query = attn.head_to_batch_dim(query) # [16, 4096, 40]
|
358 |
+
key = attn.head_to_batch_dim(key) # [16, 77, 40]
|
359 |
+
value = attn.head_to_batch_dim(value) # [16, 77, 40]
|
360 |
+
|
361 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
362 |
+
hidden_states = torch.bmm(attention_probs, value)
|
363 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
364 |
+
|
365 |
+
concept_mask_layer = self.concept_mask_layer
|
366 |
+
if len(global_concept_mask) == 0:
|
367 |
+
global_concept_mask = [None for _ in range(len(self.textual_concept_idxs))]
|
368 |
+
for i in range(len(self.textual_concept_idxs)):
|
369 |
+
ip_hidden_states = ip_hidden_states_list[i]
|
370 |
+
textual_concept_start_idx, textual_concept_end_idx = (
|
371 |
+
self.textual_concept_idxs[i]
|
372 |
+
)
|
373 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
374 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
375 |
+
|
376 |
+
ip_key = attn.head_to_batch_dim(ip_key) # [16, 4, 40]
|
377 |
+
ip_value = attn.head_to_batch_dim(ip_value) # [16, 4, 40]
|
378 |
+
|
379 |
+
# attention_probs: [20/40, 4096, 77]
|
380 |
+
|
381 |
+
ip_attention_mask = attention_probs[
|
382 |
+
:, :, textual_concept_start_idx:textual_concept_end_idx
|
383 |
+
] # [16, 4096, T]
|
384 |
+
ip_attention_mask = torch.mean(
|
385 |
+
ip_attention_mask, dim=-1, keepdim=True
|
386 |
+
) # [16, 4096, 1]
|
387 |
+
ip_attention_mask = attn.batch_to_head_dim(
|
388 |
+
ip_attention_mask
|
389 |
+
) # [2, 4096, 8]
|
390 |
+
ip_attention_mask = torch.mean(
|
391 |
+
ip_attention_mask, dim=-1, keepdim=True
|
392 |
+
) # [2, 4096, 1]
|
393 |
+
|
394 |
+
ip_attention_mask = ip_attention_mask / (
|
395 |
+
torch.amax(ip_attention_mask, dim=-2, keepdim=True) + 1e-6
|
396 |
+
)
|
397 |
+
|
398 |
+
ip_attention_mask = ip_attention_mask[1:2] # (use the classifier one)
|
399 |
+
|
400 |
+
# Visualization
|
401 |
+
if self.name not in attn_mask_logs:
|
402 |
+
attn_mask_logs[self.name] = []
|
403 |
+
text_attn_map_logs[self.name] = []
|
404 |
+
image_attn_map_logs[self.name] = []
|
405 |
+
attn_mask_logs[self.name].append(
|
406 |
+
ip_attention_mask.detach().cpu().numpy()[0, :, 0]
|
407 |
+
)
|
408 |
+
text_attn_map_logs[self.name].append(
|
409 |
+
ip_attention_mask.detach().cpu().numpy()[0, :, 0]
|
410 |
+
)
|
411 |
+
|
412 |
+
if self.global_masking and (
|
413 |
+
self.name == concept_mask_layer[0]
|
414 |
+
):
|
415 |
+
global_concept_mask[i] = ip_attention_mask
|
416 |
+
|
417 |
+
if (
|
418 |
+
self.global_masking
|
419 |
+
and self.name != concept_mask_layer[0]
|
420 |
+
and global_concept_mask[i] is not None
|
421 |
+
):
|
422 |
+
original_dim = int(global_concept_mask[i].shape[1] ** 0.5)
|
423 |
+
target_dim = int(hidden_states.shape[1] ** 0.5)
|
424 |
+
global_concept_mask_2d = global_concept_mask[i].view(
|
425 |
+
global_concept_mask[i].shape[0], 1, original_dim, original_dim
|
426 |
+
)
|
427 |
+
resized_global_concept_mask_2d = F.interpolate(
|
428 |
+
global_concept_mask_2d,
|
429 |
+
size=(target_dim, target_dim),
|
430 |
+
mode="nearest",
|
431 |
+
)
|
432 |
+
resized_global_concept_mask = resized_global_concept_mask_2d.view(
|
433 |
+
global_concept_mask[i].shape[0], -1, 1
|
434 |
+
)
|
435 |
+
ip_attention_mask = resized_global_concept_mask
|
436 |
+
|
437 |
+
ip_attention_probs = attn.get_attention_scores(
|
438 |
+
query, ip_key, None
|
439 |
+
) # [16, 4096, 4]
|
440 |
+
|
441 |
+
# Visualization
|
442 |
+
ip_attention_map = attention_probs[:, :, 15:16] # [16, 4096, T]
|
443 |
+
ip_attention_map = torch.mean(
|
444 |
+
ip_attention_map, dim=-1, keepdim=True
|
445 |
+
) # [16, 4096, 1]
|
446 |
+
ip_attention_map = torch.mean(
|
447 |
+
ip_attention_map, dim=-1, keepdim=True
|
448 |
+
) # [16, 4096, 1]
|
449 |
+
ip_attention_map = attn.batch_to_head_dim(ip_attention_map) # [2, 4096, 8]
|
450 |
+
ip_attention_map = torch.mean(
|
451 |
+
ip_attention_map, dim=-1, keepdim=True
|
452 |
+
) # [2, 4096, 1]
|
453 |
+
ip_attention_map = ip_attention_map / (
|
454 |
+
torch.amax(ip_attention_map, dim=-2, keepdim=True) + 1e-6
|
455 |
+
)
|
456 |
+
ip_attention_map = ip_attention_map[1:2] # (use the classifier one)
|
457 |
+
image_attn_map_logs[self.name].append(
|
458 |
+
ip_attention_map.detach().cpu().numpy()[0, :, 0]
|
459 |
+
)
|
460 |
+
|
461 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) # [16, 4096, 40]
|
462 |
+
ip_hidden_states = attn.batch_to_head_dim(
|
463 |
+
ip_hidden_states
|
464 |
+
) # [2, 4096, 320]
|
465 |
+
ip_hidden_states = ip_hidden_states * ip_attention_mask
|
466 |
+
|
467 |
+
if self.adaptive_scale_mask:
|
468 |
+
raise ValueError("adaptive_scale_mask is deprecated already")
|
469 |
+
|
470 |
+
hidden_states += self.scale * ip_hidden_states
|
471 |
+
|
472 |
+
# linear proj
|
473 |
+
hidden_states = attn.to_out[0](hidden_states)
|
474 |
+
# dropout
|
475 |
+
hidden_states = attn.to_out[1](hidden_states)
|
476 |
+
|
477 |
+
if input_ndim == 4:
|
478 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
479 |
+
batch_size, channel, height, width
|
480 |
+
)
|
481 |
+
|
482 |
+
if attn.residual_connection:
|
483 |
+
hidden_states = hidden_states + residual
|
484 |
+
|
485 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
486 |
+
|
487 |
+
return hidden_states
|
488 |
+
|
489 |
+
|
490 |
+
class AttnProcessor2_0(torch.nn.Module):
|
491 |
+
r"""
|
492 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
493 |
+
"""
|
494 |
+
|
495 |
+
def __init__(
|
496 |
+
self,
|
497 |
+
hidden_size=None,
|
498 |
+
cross_attention_dim=None,
|
499 |
+
):
|
500 |
+
super().__init__()
|
501 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
502 |
+
raise ImportError(
|
503 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
504 |
+
)
|
505 |
+
|
506 |
+
def __call__(
|
507 |
+
self,
|
508 |
+
attn,
|
509 |
+
hidden_states,
|
510 |
+
encoder_hidden_states=None,
|
511 |
+
attention_mask=None,
|
512 |
+
temb=None,
|
513 |
+
*args,
|
514 |
+
**kwargs,
|
515 |
+
):
|
516 |
+
residual = hidden_states
|
517 |
+
|
518 |
+
if attn.spatial_norm is not None:
|
519 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
520 |
+
|
521 |
+
input_ndim = hidden_states.ndim
|
522 |
+
|
523 |
+
if input_ndim == 4:
|
524 |
+
batch_size, channel, height, width = hidden_states.shape
|
525 |
+
hidden_states = hidden_states.view(
|
526 |
+
batch_size, channel, height * width
|
527 |
+
).transpose(1, 2)
|
528 |
+
|
529 |
+
batch_size, sequence_length, _ = (
|
530 |
+
hidden_states.shape
|
531 |
+
if encoder_hidden_states is None
|
532 |
+
else encoder_hidden_states.shape
|
533 |
+
)
|
534 |
+
|
535 |
+
if attention_mask is not None:
|
536 |
+
attention_mask = attn.prepare_attention_mask(
|
537 |
+
attention_mask, sequence_length, batch_size
|
538 |
+
)
|
539 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
540 |
+
# (batch, heads, source_length, target_length)
|
541 |
+
attention_mask = attention_mask.view(
|
542 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
543 |
+
)
|
544 |
+
|
545 |
+
if attn.group_norm is not None:
|
546 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
547 |
+
1, 2
|
548 |
+
)
|
549 |
+
|
550 |
+
query = attn.to_q(hidden_states)
|
551 |
+
|
552 |
+
if encoder_hidden_states is None:
|
553 |
+
encoder_hidden_states = hidden_states
|
554 |
+
elif attn.norm_cross:
|
555 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
556 |
+
encoder_hidden_states
|
557 |
+
)
|
558 |
+
|
559 |
+
key = attn.to_k(encoder_hidden_states)
|
560 |
+
value = attn.to_v(encoder_hidden_states)
|
561 |
+
|
562 |
+
inner_dim = key.shape[-1]
|
563 |
+
head_dim = inner_dim // attn.heads
|
564 |
+
|
565 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
566 |
+
|
567 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
568 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
569 |
+
|
570 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
571 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
572 |
+
hidden_states = F.scaled_dot_product_attention(
|
573 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
574 |
+
)
|
575 |
+
|
576 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
577 |
+
batch_size, -1, attn.heads * head_dim
|
578 |
+
)
|
579 |
+
hidden_states = hidden_states.to(query.dtype)
|
580 |
+
|
581 |
+
# linear proj
|
582 |
+
hidden_states = attn.to_out[0](hidden_states)
|
583 |
+
# dropout
|
584 |
+
hidden_states = attn.to_out[1](hidden_states)
|
585 |
+
|
586 |
+
if input_ndim == 4:
|
587 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
588 |
+
batch_size, channel, height, width
|
589 |
+
)
|
590 |
+
|
591 |
+
if attn.residual_connection:
|
592 |
+
hidden_states = hidden_states + residual
|
593 |
+
|
594 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
595 |
+
|
596 |
+
return hidden_states
|
597 |
+
|
598 |
+
|
599 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
600 |
+
r"""
|
601 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
602 |
+
Args:
|
603 |
+
hidden_size (`int`):
|
604 |
+
The hidden size of the attention layer.
|
605 |
+
cross_attention_dim (`int`):
|
606 |
+
The number of channels in the `encoder_hidden_states`.
|
607 |
+
scale (`float`, defaults to 1.0):
|
608 |
+
the weight scale of image prompt.
|
609 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
610 |
+
The context length of the image features.
|
611 |
+
"""
|
612 |
+
|
613 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
614 |
+
super().__init__()
|
615 |
+
|
616 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
617 |
+
raise ImportError(
|
618 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
619 |
+
)
|
620 |
+
|
621 |
+
self.hidden_size = hidden_size
|
622 |
+
self.cross_attention_dim = cross_attention_dim
|
623 |
+
self.scale = scale
|
624 |
+
self.num_tokens = num_tokens
|
625 |
+
|
626 |
+
self.to_k_ip = nn.Linear(
|
627 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
628 |
+
)
|
629 |
+
self.to_v_ip = nn.Linear(
|
630 |
+
cross_attention_dim or hidden_size, hidden_size, bias=False
|
631 |
+
)
|
632 |
+
|
633 |
+
def __call__(
|
634 |
+
self,
|
635 |
+
attn,
|
636 |
+
hidden_states,
|
637 |
+
encoder_hidden_states=None,
|
638 |
+
attention_mask=None,
|
639 |
+
temb=None,
|
640 |
+
*args,
|
641 |
+
**kwargs,
|
642 |
+
):
|
643 |
+
residual = hidden_states
|
644 |
+
|
645 |
+
if attn.spatial_norm is not None:
|
646 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
647 |
+
|
648 |
+
input_ndim = hidden_states.ndim
|
649 |
+
|
650 |
+
if input_ndim == 4:
|
651 |
+
batch_size, channel, height, width = hidden_states.shape
|
652 |
+
hidden_states = hidden_states.view(
|
653 |
+
batch_size, channel, height * width
|
654 |
+
).transpose(1, 2)
|
655 |
+
|
656 |
+
batch_size, sequence_length, _ = (
|
657 |
+
hidden_states.shape
|
658 |
+
if encoder_hidden_states is None
|
659 |
+
else encoder_hidden_states.shape
|
660 |
+
)
|
661 |
+
|
662 |
+
if attention_mask is not None:
|
663 |
+
attention_mask = attn.prepare_attention_mask(
|
664 |
+
attention_mask, sequence_length, batch_size
|
665 |
+
)
|
666 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
667 |
+
# (batch, heads, source_length, target_length)
|
668 |
+
attention_mask = attention_mask.view(
|
669 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
670 |
+
)
|
671 |
+
|
672 |
+
if attn.group_norm is not None:
|
673 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
674 |
+
1, 2
|
675 |
+
)
|
676 |
+
|
677 |
+
query = attn.to_q(hidden_states)
|
678 |
+
|
679 |
+
if encoder_hidden_states is None:
|
680 |
+
encoder_hidden_states = hidden_states
|
681 |
+
else:
|
682 |
+
# get encoder_hidden_states, ip_hidden_states
|
683 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
684 |
+
encoder_hidden_states, ip_hidden_states = (
|
685 |
+
encoder_hidden_states[:, :end_pos, :],
|
686 |
+
encoder_hidden_states[:, end_pos:, :],
|
687 |
+
)
|
688 |
+
if attn.norm_cross:
|
689 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
690 |
+
encoder_hidden_states
|
691 |
+
)
|
692 |
+
|
693 |
+
key = attn.to_k(encoder_hidden_states)
|
694 |
+
value = attn.to_v(encoder_hidden_states)
|
695 |
+
|
696 |
+
inner_dim = key.shape[-1]
|
697 |
+
head_dim = inner_dim // attn.heads
|
698 |
+
|
699 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
700 |
+
|
701 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
702 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
703 |
+
|
704 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
705 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
706 |
+
hidden_states = F.scaled_dot_product_attention(
|
707 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
708 |
+
)
|
709 |
+
|
710 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
711 |
+
batch_size, -1, attn.heads * head_dim
|
712 |
+
)
|
713 |
+
hidden_states = hidden_states.to(query.dtype)
|
714 |
+
|
715 |
+
# for ip-adapter
|
716 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
717 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
718 |
+
|
719 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
720 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
721 |
+
|
722 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
723 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
724 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
725 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
726 |
+
)
|
727 |
+
with torch.no_grad():
|
728 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
729 |
+
# print(self.attn_map.shape)
|
730 |
+
|
731 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(
|
732 |
+
batch_size, -1, attn.heads * head_dim
|
733 |
+
)
|
734 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
735 |
+
|
736 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
737 |
+
|
738 |
+
# linear proj
|
739 |
+
hidden_states = attn.to_out[0](hidden_states)
|
740 |
+
# dropout
|
741 |
+
hidden_states = attn.to_out[1](hidden_states)
|
742 |
+
|
743 |
+
if input_ndim == 4:
|
744 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
745 |
+
batch_size, channel, height, width
|
746 |
+
)
|
747 |
+
|
748 |
+
if attn.residual_connection:
|
749 |
+
hidden_states = hidden_states + residual
|
750 |
+
|
751 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
752 |
+
|
753 |
+
return hidden_states
|
754 |
+
|
755 |
+
|
756 |
+
## for controlnet
|
757 |
+
class CNAttnProcessor:
|
758 |
+
r"""
|
759 |
+
Default processor for performing attention-related computations.
|
760 |
+
"""
|
761 |
+
|
762 |
+
def __init__(self, num_tokens=4):
|
763 |
+
self.num_tokens = num_tokens
|
764 |
+
|
765 |
+
def __call__(
|
766 |
+
self,
|
767 |
+
attn,
|
768 |
+
hidden_states,
|
769 |
+
encoder_hidden_states=None,
|
770 |
+
attention_mask=None,
|
771 |
+
temb=None,
|
772 |
+
*args,
|
773 |
+
**kwargs,
|
774 |
+
):
|
775 |
+
residual = hidden_states
|
776 |
+
|
777 |
+
if attn.spatial_norm is not None:
|
778 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
779 |
+
|
780 |
+
input_ndim = hidden_states.ndim
|
781 |
+
|
782 |
+
if input_ndim == 4:
|
783 |
+
batch_size, channel, height, width = hidden_states.shape
|
784 |
+
hidden_states = hidden_states.view(
|
785 |
+
batch_size, channel, height * width
|
786 |
+
).transpose(1, 2)
|
787 |
+
|
788 |
+
batch_size, sequence_length, _ = (
|
789 |
+
hidden_states.shape
|
790 |
+
if encoder_hidden_states is None
|
791 |
+
else encoder_hidden_states.shape
|
792 |
+
)
|
793 |
+
attention_mask = attn.prepare_attention_mask(
|
794 |
+
attention_mask, sequence_length, batch_size
|
795 |
+
)
|
796 |
+
|
797 |
+
if attn.group_norm is not None:
|
798 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
799 |
+
1, 2
|
800 |
+
)
|
801 |
+
|
802 |
+
query = attn.to_q(hidden_states)
|
803 |
+
|
804 |
+
if encoder_hidden_states is None:
|
805 |
+
encoder_hidden_states = hidden_states
|
806 |
+
else:
|
807 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
808 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
809 |
+
if attn.norm_cross:
|
810 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
811 |
+
encoder_hidden_states
|
812 |
+
)
|
813 |
+
|
814 |
+
key = attn.to_k(encoder_hidden_states)
|
815 |
+
value = attn.to_v(encoder_hidden_states)
|
816 |
+
|
817 |
+
query = attn.head_to_batch_dim(query)
|
818 |
+
key = attn.head_to_batch_dim(key)
|
819 |
+
value = attn.head_to_batch_dim(value)
|
820 |
+
|
821 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
822 |
+
hidden_states = torch.bmm(attention_probs, value)
|
823 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
824 |
+
|
825 |
+
# linear proj
|
826 |
+
hidden_states = attn.to_out[0](hidden_states)
|
827 |
+
# dropout
|
828 |
+
hidden_states = attn.to_out[1](hidden_states)
|
829 |
+
|
830 |
+
if input_ndim == 4:
|
831 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
832 |
+
batch_size, channel, height, width
|
833 |
+
)
|
834 |
+
|
835 |
+
if attn.residual_connection:
|
836 |
+
hidden_states = hidden_states + residual
|
837 |
+
|
838 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
839 |
+
|
840 |
+
return hidden_states
|
841 |
+
|
842 |
+
|
843 |
+
class CNAttnProcessor2_0:
|
844 |
+
r"""
|
845 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
846 |
+
"""
|
847 |
+
|
848 |
+
def __init__(self, num_tokens=4):
|
849 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
850 |
+
raise ImportError(
|
851 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
852 |
+
)
|
853 |
+
self.num_tokens = num_tokens
|
854 |
+
|
855 |
+
def __call__(
|
856 |
+
self,
|
857 |
+
attn,
|
858 |
+
hidden_states,
|
859 |
+
encoder_hidden_states=None,
|
860 |
+
attention_mask=None,
|
861 |
+
temb=None,
|
862 |
+
*args,
|
863 |
+
**kwargs,
|
864 |
+
):
|
865 |
+
residual = hidden_states
|
866 |
+
|
867 |
+
if attn.spatial_norm is not None:
|
868 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
869 |
+
|
870 |
+
input_ndim = hidden_states.ndim
|
871 |
+
|
872 |
+
if input_ndim == 4:
|
873 |
+
batch_size, channel, height, width = hidden_states.shape
|
874 |
+
hidden_states = hidden_states.view(
|
875 |
+
batch_size, channel, height * width
|
876 |
+
).transpose(1, 2)
|
877 |
+
|
878 |
+
batch_size, sequence_length, _ = (
|
879 |
+
hidden_states.shape
|
880 |
+
if encoder_hidden_states is None
|
881 |
+
else encoder_hidden_states.shape
|
882 |
+
)
|
883 |
+
|
884 |
+
if attention_mask is not None:
|
885 |
+
attention_mask = attn.prepare_attention_mask(
|
886 |
+
attention_mask, sequence_length, batch_size
|
887 |
+
)
|
888 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
889 |
+
# (batch, heads, source_length, target_length)
|
890 |
+
attention_mask = attention_mask.view(
|
891 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
892 |
+
)
|
893 |
+
|
894 |
+
if attn.group_norm is not None:
|
895 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
896 |
+
1, 2
|
897 |
+
)
|
898 |
+
|
899 |
+
query = attn.to_q(hidden_states)
|
900 |
+
|
901 |
+
if encoder_hidden_states is None:
|
902 |
+
encoder_hidden_states = hidden_states
|
903 |
+
else:
|
904 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
905 |
+
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
906 |
+
if attn.norm_cross:
|
907 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
908 |
+
encoder_hidden_states
|
909 |
+
)
|
910 |
+
|
911 |
+
key = attn.to_k(encoder_hidden_states)
|
912 |
+
value = attn.to_v(encoder_hidden_states)
|
913 |
+
|
914 |
+
inner_dim = key.shape[-1]
|
915 |
+
head_dim = inner_dim // attn.heads
|
916 |
+
|
917 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
918 |
+
|
919 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
920 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
921 |
+
|
922 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
923 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
924 |
+
hidden_states = F.scaled_dot_product_attention(
|
925 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
926 |
+
)
|
927 |
+
|
928 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
929 |
+
batch_size, -1, attn.heads * head_dim
|
930 |
+
)
|
931 |
+
hidden_states = hidden_states.to(query.dtype)
|
932 |
+
|
933 |
+
# linear proj
|
934 |
+
hidden_states = attn.to_out[0](hidden_states)
|
935 |
+
# dropout
|
936 |
+
hidden_states = attn.to_out[1](hidden_states)
|
937 |
+
|
938 |
+
if input_ndim == 4:
|
939 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
940 |
+
batch_size, channel, height, width
|
941 |
+
)
|
942 |
+
|
943 |
+
if attn.residual_connection:
|
944 |
+
hidden_states = hidden_states + residual
|
945 |
+
|
946 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
947 |
+
|
948 |
+
return hidden_states
|
ip_adapter/custom_pipelines.py
ADDED
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
|
5 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
6 |
+
from diffusers.image_processor import PipelineImageInput
|
7 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import (
|
8 |
+
StableDiffusionPipelineOutput,
|
9 |
+
)
|
10 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
11 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
|
12 |
+
rescale_noise_cfg,
|
13 |
+
)
|
14 |
+
|
15 |
+
from .attention_processor import IPAttnProcessor, ConceptrolAttnProcessor
|
16 |
+
from . import attention_processor
|
17 |
+
|
18 |
+
|
19 |
+
class StableDiffusionXLCustomPipeline(StableDiffusionXLPipeline):
|
20 |
+
def set_scale(self, scale):
|
21 |
+
for attn_processor in self.unet.attn_processors.values():
|
22 |
+
if isinstance(attn_processor, (IPAttnProcessor, ConceptrolAttnProcessor)):
|
23 |
+
attn_processor.scale = scale
|
24 |
+
|
25 |
+
@torch.no_grad()
|
26 |
+
def __call__( # noqa: C901
|
27 |
+
self,
|
28 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
29 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
30 |
+
height: Optional[int] = None,
|
31 |
+
width: Optional[int] = None,
|
32 |
+
num_inference_steps: int = 50,
|
33 |
+
denoising_end: Optional[float] = None,
|
34 |
+
guidance_scale: float = 6.0,
|
35 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
36 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
37 |
+
num_images_per_prompt: Optional[int] = 1,
|
38 |
+
eta: float = 0.0,
|
39 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
40 |
+
latents: Optional[torch.FloatTensor] = None,
|
41 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
42 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
43 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
44 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
45 |
+
output_type: Optional[str] = "pil",
|
46 |
+
return_dict: bool = True,
|
47 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
48 |
+
callback_steps: int = 1,
|
49 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
50 |
+
guidance_rescale: float = 0.0,
|
51 |
+
original_size: Optional[Tuple[int, int]] = None,
|
52 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
53 |
+
target_size: Optional[Tuple[int, int]] = None,
|
54 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
55 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
56 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
57 |
+
control_guidance_start: float = 0.0,
|
58 |
+
control_guidance_end: float = 1.0,
|
59 |
+
):
|
60 |
+
r"""
|
61 |
+
Function invoked when calling the pipeline for generation.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
prompt (`str` or `List[str]`, *optional*):
|
65 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
66 |
+
instead.
|
67 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
68 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
69 |
+
used in both text-encoders
|
70 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
71 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
72 |
+
Anything below 512 pixels won't work well for
|
73 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
74 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
75 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
76 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
77 |
+
Anything below 512 pixels won't work well for
|
78 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
79 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
80 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
81 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
82 |
+
expense of slower inference.
|
83 |
+
denoising_end (`float`, *optional*):
|
84 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
85 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
86 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
87 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
88 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
89 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
90 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
91 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
92 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
93 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
94 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
95 |
+
usually at the expense of lower image quality.
|
96 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
97 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
98 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
99 |
+
less than `1`).
|
100 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
101 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
102 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
103 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
104 |
+
The number of images to generate per prompt.
|
105 |
+
eta (`float`, *optional*, defaults to 0.0):
|
106 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
107 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
108 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
109 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
110 |
+
to make generation deterministic.
|
111 |
+
latents (`torch.FloatTensor`, *optional*):
|
112 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
113 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
114 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
115 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
116 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
117 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
118 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
119 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
120 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
121 |
+
argument.
|
122 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
123 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
124 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
125 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
126 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
127 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
128 |
+
input argument.
|
129 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
130 |
+
The output format of the generate image. Choose between
|
131 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
132 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
133 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
134 |
+
of a plain tuple.
|
135 |
+
callback (`Callable`, *optional*):
|
136 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
137 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
138 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
139 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
140 |
+
called at every step.
|
141 |
+
cross_attention_kwargs (`dict`, *optional*):
|
142 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
143 |
+
`self.processor` in
|
144 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
145 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
146 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
147 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
148 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
149 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
150 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
151 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
152 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
153 |
+
explained in section 2.2 of
|
154 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
155 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
156 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
157 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
158 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
159 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
160 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
161 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
162 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
163 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
164 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
165 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
166 |
+
micro-conditioning as explained in section 2.2 of
|
167 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
168 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
169 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
170 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
171 |
+
micro-conditioning as explained in section 2.2 of
|
172 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
173 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
174 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
175 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
176 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
177 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
178 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
179 |
+
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
180 |
+
The percentage of total steps at which the ControlNet starts applying.
|
181 |
+
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
182 |
+
The percentage of total steps at which the ControlNet stops applying.
|
183 |
+
|
184 |
+
Examples:
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
188 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
189 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
190 |
+
"""
|
191 |
+
|
192 |
+
attention_processor.attn_mask_logs = {}
|
193 |
+
attention_processor.image_attn_map_logs = {}
|
194 |
+
attention_processor.text_attn_map_logs = {}
|
195 |
+
# Clear the global concept mask
|
196 |
+
attention_processor.global_concept_mask = []
|
197 |
+
|
198 |
+
# 0. Default height and width to unet
|
199 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
200 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
201 |
+
|
202 |
+
original_size = original_size or (height, width)
|
203 |
+
target_size = target_size or (height, width)
|
204 |
+
|
205 |
+
# 1. Check inputs. Raise error if not correct
|
206 |
+
self.check_inputs(
|
207 |
+
prompt,
|
208 |
+
prompt_2,
|
209 |
+
height,
|
210 |
+
width,
|
211 |
+
callback_steps,
|
212 |
+
negative_prompt,
|
213 |
+
negative_prompt_2,
|
214 |
+
prompt_embeds,
|
215 |
+
negative_prompt_embeds,
|
216 |
+
pooled_prompt_embeds,
|
217 |
+
negative_pooled_prompt_embeds,
|
218 |
+
)
|
219 |
+
|
220 |
+
# 2. Define call parameters
|
221 |
+
if prompt is not None and isinstance(prompt, str):
|
222 |
+
batch_size = 1
|
223 |
+
elif prompt is not None and isinstance(prompt, list):
|
224 |
+
batch_size = len(prompt)
|
225 |
+
else:
|
226 |
+
batch_size = prompt_embeds.shape[0]
|
227 |
+
|
228 |
+
device = self._execution_device
|
229 |
+
|
230 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
231 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
232 |
+
# corresponds to doing no classifier free guidance.
|
233 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
234 |
+
|
235 |
+
# 3. Encode input prompt
|
236 |
+
text_encoder_lora_scale = (
|
237 |
+
cross_attention_kwargs.get("scale", None)
|
238 |
+
if cross_attention_kwargs is not None
|
239 |
+
else None
|
240 |
+
)
|
241 |
+
(
|
242 |
+
prompt_embeds,
|
243 |
+
negative_prompt_embeds,
|
244 |
+
pooled_prompt_embeds,
|
245 |
+
negative_pooled_prompt_embeds,
|
246 |
+
) = self.encode_prompt(
|
247 |
+
prompt=prompt,
|
248 |
+
prompt_2=prompt_2,
|
249 |
+
device=device,
|
250 |
+
num_images_per_prompt=num_images_per_prompt,
|
251 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
252 |
+
negative_prompt=negative_prompt,
|
253 |
+
negative_prompt_2=negative_prompt_2,
|
254 |
+
prompt_embeds=prompt_embeds,
|
255 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
256 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
257 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
258 |
+
lora_scale=text_encoder_lora_scale,
|
259 |
+
)
|
260 |
+
|
261 |
+
# 4. Prepare timesteps
|
262 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
263 |
+
|
264 |
+
timesteps = self.scheduler.timesteps
|
265 |
+
|
266 |
+
# 5. Prepare latent variables
|
267 |
+
num_channels_latents = self.unet.config.in_channels
|
268 |
+
latents = self.prepare_latents(
|
269 |
+
batch_size * num_images_per_prompt,
|
270 |
+
num_channels_latents,
|
271 |
+
height,
|
272 |
+
width,
|
273 |
+
prompt_embeds.dtype,
|
274 |
+
device,
|
275 |
+
generator,
|
276 |
+
latents,
|
277 |
+
)
|
278 |
+
|
279 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
280 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
281 |
+
|
282 |
+
# 7. Prepare added time ids & embeddings
|
283 |
+
add_text_embeds = pooled_prompt_embeds
|
284 |
+
if self.text_encoder_2 is None:
|
285 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
286 |
+
else:
|
287 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
288 |
+
|
289 |
+
add_time_ids = self._get_add_time_ids(
|
290 |
+
original_size,
|
291 |
+
crops_coords_top_left,
|
292 |
+
target_size,
|
293 |
+
dtype=prompt_embeds.dtype,
|
294 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
295 |
+
)
|
296 |
+
if negative_original_size is not None and negative_target_size is not None:
|
297 |
+
negative_add_time_ids = self._get_add_time_ids(
|
298 |
+
negative_original_size,
|
299 |
+
negative_crops_coords_top_left,
|
300 |
+
negative_target_size,
|
301 |
+
dtype=prompt_embeds.dtype,
|
302 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
negative_add_time_ids = add_time_ids
|
306 |
+
|
307 |
+
if do_classifier_free_guidance:
|
308 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
309 |
+
add_text_embeds = torch.cat(
|
310 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
311 |
+
)
|
312 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
313 |
+
|
314 |
+
prompt_embeds = prompt_embeds.to(device)
|
315 |
+
add_text_embeds = add_text_embeds.to(device)
|
316 |
+
add_time_ids = add_time_ids.to(device).repeat(
|
317 |
+
batch_size * num_images_per_prompt, 1
|
318 |
+
)
|
319 |
+
|
320 |
+
# 8. Denoising loop
|
321 |
+
num_warmup_steps = max(
|
322 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
323 |
+
)
|
324 |
+
|
325 |
+
# 7.1 Apply denoising_end
|
326 |
+
if (
|
327 |
+
denoising_end is not None
|
328 |
+
and isinstance(denoising_end, float)
|
329 |
+
and denoising_end > 0
|
330 |
+
and denoising_end < 1
|
331 |
+
):
|
332 |
+
discrete_timestep_cutoff = int(
|
333 |
+
round(
|
334 |
+
self.scheduler.config.num_train_timesteps
|
335 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
336 |
+
)
|
337 |
+
)
|
338 |
+
num_inference_steps = len(
|
339 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
340 |
+
)
|
341 |
+
timesteps = timesteps[:num_inference_steps]
|
342 |
+
|
343 |
+
# get init conditioning scale
|
344 |
+
for attn_processor in self.unet.attn_processors.values():
|
345 |
+
if isinstance(attn_processor, (IPAttnProcessor, ConceptrolAttnProcessor)):
|
346 |
+
conditioning_scale = attn_processor.scale
|
347 |
+
break
|
348 |
+
|
349 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
350 |
+
for i, t in enumerate(timesteps):
|
351 |
+
if (i / len(timesteps) < control_guidance_start) or (
|
352 |
+
(i + 1) / len(timesteps) > control_guidance_end
|
353 |
+
):
|
354 |
+
self.set_scale(0.0)
|
355 |
+
else:
|
356 |
+
self.set_scale(conditioning_scale)
|
357 |
+
|
358 |
+
# expand the latents if we are doing classifier free guidance
|
359 |
+
latent_model_input = (
|
360 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
361 |
+
)
|
362 |
+
|
363 |
+
latent_model_input = self.scheduler.scale_model_input(
|
364 |
+
latent_model_input, t
|
365 |
+
)
|
366 |
+
|
367 |
+
# predict the noise residual
|
368 |
+
added_cond_kwargs = {
|
369 |
+
"text_embeds": add_text_embeds,
|
370 |
+
"time_ids": add_time_ids,
|
371 |
+
}
|
372 |
+
|
373 |
+
noise_pred = self.unet(
|
374 |
+
latent_model_input,
|
375 |
+
t,
|
376 |
+
encoder_hidden_states=prompt_embeds,
|
377 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
378 |
+
added_cond_kwargs=added_cond_kwargs,
|
379 |
+
return_dict=False,
|
380 |
+
)[0]
|
381 |
+
|
382 |
+
# perform guidance
|
383 |
+
if do_classifier_free_guidance:
|
384 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
385 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
386 |
+
noise_pred_text - noise_pred_uncond
|
387 |
+
)
|
388 |
+
|
389 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
390 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
391 |
+
noise_pred = rescale_noise_cfg(
|
392 |
+
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
|
393 |
+
)
|
394 |
+
|
395 |
+
# compute the previous noisy sample x_t -> x_t-1
|
396 |
+
latents = self.scheduler.step(
|
397 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
398 |
+
)[0]
|
399 |
+
|
400 |
+
# call the callback, if provided
|
401 |
+
if i == len(timesteps) - 1 or (
|
402 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
403 |
+
):
|
404 |
+
progress_bar.update()
|
405 |
+
if callback is not None and i % callback_steps == 0:
|
406 |
+
callback(i, t, latents)
|
407 |
+
|
408 |
+
if not output_type == "latent":
|
409 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
410 |
+
needs_upcasting = (
|
411 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
412 |
+
)
|
413 |
+
|
414 |
+
if needs_upcasting:
|
415 |
+
self.upcast_vae()
|
416 |
+
latents = latents.to(
|
417 |
+
next(iter(self.vae.post_quant_conv.parameters())).dtype
|
418 |
+
)
|
419 |
+
|
420 |
+
image = self.vae.decode(
|
421 |
+
latents / self.vae.config.scaling_factor, return_dict=False
|
422 |
+
)[0]
|
423 |
+
|
424 |
+
# cast back to fp16 if needed
|
425 |
+
if needs_upcasting:
|
426 |
+
self.vae.to(dtype=torch.float16)
|
427 |
+
else:
|
428 |
+
image = latents
|
429 |
+
|
430 |
+
if output_type != "latent":
|
431 |
+
# apply watermark if available
|
432 |
+
if self.watermark is not None:
|
433 |
+
image = self.watermark.apply_watermark(image)
|
434 |
+
|
435 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
436 |
+
|
437 |
+
# Offload all models
|
438 |
+
self.maybe_free_model_hooks()
|
439 |
+
|
440 |
+
if not return_dict:
|
441 |
+
return (image,)
|
442 |
+
|
443 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
444 |
+
|
445 |
+
|
446 |
+
class StableDiffusionCustomPipeline(StableDiffusionPipeline):
|
447 |
+
def set_scale(self, scale):
|
448 |
+
for attn_processor in self.unet.attn_processors.values():
|
449 |
+
if isinstance(attn_processor, (IPAttnProcessor, ConceptrolAttnProcessor)):
|
450 |
+
attn_processor.scale = scale
|
451 |
+
|
452 |
+
@torch.no_grad()
|
453 |
+
def __call__(
|
454 |
+
self,
|
455 |
+
prompt: Union[str, List[str]] = None,
|
456 |
+
height: Optional[int] = None,
|
457 |
+
width: Optional[int] = None,
|
458 |
+
num_inference_steps: int = 50,
|
459 |
+
timesteps: List[int] = None,
|
460 |
+
guidance_scale: float = 7.5,
|
461 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
462 |
+
num_images_per_prompt: Optional[int] = 1,
|
463 |
+
eta: float = 0.0,
|
464 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
465 |
+
latents: Optional[torch.Tensor] = None,
|
466 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
467 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
468 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
469 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
470 |
+
output_type: Optional[str] = "pil",
|
471 |
+
return_dict: bool = True,
|
472 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
473 |
+
guidance_rescale: float = 0.0,
|
474 |
+
clip_skip: Optional[int] = None,
|
475 |
+
callback_on_step_end: Optional[
|
476 |
+
Union[
|
477 |
+
Callable[[int, int, Dict], None],
|
478 |
+
PipelineCallback,
|
479 |
+
MultiPipelineCallbacks,
|
480 |
+
]
|
481 |
+
] = None,
|
482 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
483 |
+
control_guidance_start: float = 0.0,
|
484 |
+
control_guidance_end: float = 1.0,
|
485 |
+
**kwargs,
|
486 |
+
):
|
487 |
+
r"""
|
488 |
+
The call function to the pipeline for generation.
|
489 |
+
|
490 |
+
Args:
|
491 |
+
prompt (`str` or `List[str]`, *optional*):
|
492 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
493 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
494 |
+
The height in pixels of the generated image.
|
495 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
496 |
+
The width in pixels of the generated image.
|
497 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
498 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
499 |
+
expense of slower inference.
|
500 |
+
timesteps (`List[int]`, *optional*):
|
501 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
502 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
503 |
+
passed will be used. Must be in descending order.
|
504 |
+
sigmas (`List[float]`, *optional*):
|
505 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
506 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
507 |
+
will be used.
|
508 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
509 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
510 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
511 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
512 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
513 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
514 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
515 |
+
The number of images to generate per prompt.
|
516 |
+
eta (`float`, *optional*, defaults to 0.0):
|
517 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
518 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
519 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
520 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
521 |
+
generation deterministic.
|
522 |
+
latents (`torch.Tensor`, *optional*):
|
523 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
524 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
525 |
+
tensor is generated by sampling using the supplied random `generator`.
|
526 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
527 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
528 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
529 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
530 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
531 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
532 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
533 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
534 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
535 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
536 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
537 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
538 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
539 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
540 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
541 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
542 |
+
plain tuple.
|
543 |
+
cross_attention_kwargs (`dict`, *optional*):
|
544 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
545 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
546 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
547 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
548 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
549 |
+
using zero terminal SNR.
|
550 |
+
clip_skip (`int`, *optional*):
|
551 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
552 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
553 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
554 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
555 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
556 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
557 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
558 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
559 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
560 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
561 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
562 |
+
|
563 |
+
Examples:
|
564 |
+
|
565 |
+
Returns:
|
566 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
567 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
568 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
569 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
570 |
+
"not-safe-for-work" (nsfw) content.
|
571 |
+
"""
|
572 |
+
|
573 |
+
attention_processor.attn_mask_logs = {}
|
574 |
+
attention_processor.image_attn_map_logs = {}
|
575 |
+
attention_processor.text_attn_map_logs = {}
|
576 |
+
attention_processor.global_concept_mask = []
|
577 |
+
|
578 |
+
callback = kwargs.pop("callback", None)
|
579 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
580 |
+
|
581 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
582 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
583 |
+
|
584 |
+
# 0. Default height and width to unet
|
585 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
586 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
587 |
+
# to deal with lora scaling and other possible forward hooks
|
588 |
+
|
589 |
+
# 1. Check inputs. Raise error if not correct
|
590 |
+
self.check_inputs(
|
591 |
+
prompt,
|
592 |
+
height,
|
593 |
+
width,
|
594 |
+
callback_steps,
|
595 |
+
negative_prompt,
|
596 |
+
prompt_embeds,
|
597 |
+
negative_prompt_embeds,
|
598 |
+
ip_adapter_image,
|
599 |
+
ip_adapter_image_embeds,
|
600 |
+
callback_on_step_end_tensor_inputs,
|
601 |
+
)
|
602 |
+
|
603 |
+
self._guidance_scale = guidance_scale
|
604 |
+
self._guidance_rescale = guidance_rescale
|
605 |
+
self._clip_skip = clip_skip
|
606 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
607 |
+
self._interrupt = False
|
608 |
+
|
609 |
+
# 2. Define call parameters
|
610 |
+
if prompt is not None and isinstance(prompt, str):
|
611 |
+
batch_size = 1
|
612 |
+
elif prompt is not None and isinstance(prompt, list):
|
613 |
+
batch_size = len(prompt)
|
614 |
+
else:
|
615 |
+
batch_size = prompt_embeds.shape[0]
|
616 |
+
|
617 |
+
device = self._execution_device
|
618 |
+
|
619 |
+
# 3. Encode input prompt
|
620 |
+
lora_scale = (
|
621 |
+
self.cross_attention_kwargs.get("scale", None)
|
622 |
+
if self.cross_attention_kwargs is not None
|
623 |
+
else None
|
624 |
+
)
|
625 |
+
|
626 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
627 |
+
prompt,
|
628 |
+
device,
|
629 |
+
num_images_per_prompt,
|
630 |
+
self.do_classifier_free_guidance,
|
631 |
+
negative_prompt,
|
632 |
+
prompt_embeds=prompt_embeds,
|
633 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
634 |
+
lora_scale=lora_scale,
|
635 |
+
clip_skip=self.clip_skip,
|
636 |
+
)
|
637 |
+
|
638 |
+
# For classifier free guidance, we need to do two forward passes.
|
639 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
640 |
+
# to avoid doing two forward passes
|
641 |
+
if self.do_classifier_free_guidance:
|
642 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
643 |
+
|
644 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
645 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
646 |
+
ip_adapter_image,
|
647 |
+
ip_adapter_image_embeds,
|
648 |
+
device,
|
649 |
+
batch_size * num_images_per_prompt,
|
650 |
+
self.do_classifier_free_guidance,
|
651 |
+
)
|
652 |
+
|
653 |
+
# 4. Prepare timesteps
|
654 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
655 |
+
timesteps = self.scheduler.timesteps
|
656 |
+
|
657 |
+
# 5. Prepare latent variables
|
658 |
+
num_channels_latents = self.unet.config.in_channels
|
659 |
+
latents = self.prepare_latents(
|
660 |
+
batch_size * num_images_per_prompt,
|
661 |
+
num_channels_latents,
|
662 |
+
height,
|
663 |
+
width,
|
664 |
+
prompt_embeds.dtype,
|
665 |
+
device,
|
666 |
+
generator,
|
667 |
+
latents,
|
668 |
+
)
|
669 |
+
|
670 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
671 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
672 |
+
|
673 |
+
# 6.1 Add image embeds for IP-Adapter
|
674 |
+
added_cond_kwargs = (
|
675 |
+
{"image_embeds": image_embeds}
|
676 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
677 |
+
else None
|
678 |
+
)
|
679 |
+
|
680 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
681 |
+
timestep_cond = None
|
682 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
683 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
684 |
+
batch_size * num_images_per_prompt
|
685 |
+
)
|
686 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
687 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
688 |
+
).to(device=device, dtype=latents.dtype)
|
689 |
+
|
690 |
+
# 7. Denoising loop
|
691 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
692 |
+
self._num_timesteps = len(timesteps)
|
693 |
+
|
694 |
+
# get init conditioning scale
|
695 |
+
for attn_processor in self.unet.attn_processors.values():
|
696 |
+
if isinstance(attn_processor, (ConceptrolAttnProcessor, IPAttnProcessor)):
|
697 |
+
conditioning_scale = attn_processor.scale
|
698 |
+
break
|
699 |
+
|
700 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
701 |
+
for i, t in enumerate(timesteps):
|
702 |
+
if (i / len(timesteps) < control_guidance_start) or (
|
703 |
+
(i + 1) / len(timesteps) > control_guidance_end
|
704 |
+
):
|
705 |
+
self.set_scale(0.0)
|
706 |
+
else:
|
707 |
+
self.set_scale(conditioning_scale)
|
708 |
+
|
709 |
+
if self.interrupt:
|
710 |
+
continue
|
711 |
+
|
712 |
+
# expand the latents if we are doing classifier free guidance
|
713 |
+
latent_model_input = (
|
714 |
+
torch.cat([latents] * 2)
|
715 |
+
if self.do_classifier_free_guidance
|
716 |
+
else latents
|
717 |
+
)
|
718 |
+
latent_model_input = self.scheduler.scale_model_input(
|
719 |
+
latent_model_input, t
|
720 |
+
)
|
721 |
+
|
722 |
+
# predict the noise residual
|
723 |
+
noise_pred = self.unet(
|
724 |
+
latent_model_input,
|
725 |
+
t,
|
726 |
+
encoder_hidden_states=prompt_embeds,
|
727 |
+
timestep_cond=timestep_cond,
|
728 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
729 |
+
added_cond_kwargs=added_cond_kwargs,
|
730 |
+
return_dict=False,
|
731 |
+
)[0]
|
732 |
+
|
733 |
+
# perform guidance
|
734 |
+
if self.do_classifier_free_guidance:
|
735 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
736 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
737 |
+
noise_pred_text - noise_pred_uncond
|
738 |
+
)
|
739 |
+
|
740 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
741 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
742 |
+
noise_pred = rescale_noise_cfg(
|
743 |
+
noise_pred,
|
744 |
+
noise_pred_text,
|
745 |
+
guidance_rescale=self.guidance_rescale,
|
746 |
+
)
|
747 |
+
|
748 |
+
# compute the previous noisy sample x_t -> x_t-1
|
749 |
+
results = self.scheduler.step(
|
750 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
751 |
+
)
|
752 |
+
latents = results[0]
|
753 |
+
# pred_original = results[1]
|
754 |
+
|
755 |
+
if callback_on_step_end is not None:
|
756 |
+
callback_kwargs = {}
|
757 |
+
for k in callback_on_step_end_tensor_inputs:
|
758 |
+
callback_kwargs[k] = locals()[k]
|
759 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
760 |
+
|
761 |
+
latents = callback_outputs.pop("latents", latents)
|
762 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
763 |
+
negative_prompt_embeds = callback_outputs.pop(
|
764 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
765 |
+
)
|
766 |
+
|
767 |
+
# call the callback, if provided
|
768 |
+
if i == len(timesteps) - 1 or (
|
769 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
770 |
+
):
|
771 |
+
progress_bar.update()
|
772 |
+
if callback is not None and i % callback_steps == 0:
|
773 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
774 |
+
callback(step_idx, t, latents)
|
775 |
+
|
776 |
+
if output_type != "latent":
|
777 |
+
image = self.vae.decode(
|
778 |
+
latents / self.vae.config.scaling_factor,
|
779 |
+
return_dict=False,
|
780 |
+
generator=generator,
|
781 |
+
)[0]
|
782 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
783 |
+
image, device, prompt_embeds.dtype
|
784 |
+
)
|
785 |
+
else:
|
786 |
+
image = latents
|
787 |
+
has_nsfw_concept = None
|
788 |
+
|
789 |
+
if has_nsfw_concept is None:
|
790 |
+
do_denormalize = [True] * image.shape[0]
|
791 |
+
else:
|
792 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
793 |
+
image = self.image_processor.postprocess(
|
794 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
795 |
+
)
|
796 |
+
|
797 |
+
# Offload all models
|
798 |
+
self.maybe_free_model_hooks()
|
799 |
+
|
800 |
+
if not return_dict:
|
801 |
+
return (image, has_nsfw_concept)
|
802 |
+
|
803 |
+
return StableDiffusionPipelineOutput(
|
804 |
+
images=image, nsfw_content_detected=has_nsfw_concept
|
805 |
+
)
|
ip_adapter/ip_adapter.py
ADDED
@@ -0,0 +1,1043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
6 |
+
from PIL import Image
|
7 |
+
from safetensors import safe_open
|
8 |
+
from transformers import (
|
9 |
+
CLIPImageProcessor,
|
10 |
+
CLIPVisionModelWithProjection,
|
11 |
+
CLIPTokenizer,
|
12 |
+
)
|
13 |
+
|
14 |
+
from .attention_processor import (
|
15 |
+
AttnProcessor,
|
16 |
+
CNAttnProcessor,
|
17 |
+
IPAttnProcessor,
|
18 |
+
ConceptrolAttnProcessor,
|
19 |
+
)
|
20 |
+
from .resampler import Resampler
|
21 |
+
from .utils import get_generator
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
|
24 |
+
SD_CONCEPT_LAYER = ["up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor"]
|
25 |
+
SDXL_CONCEPT_LAYER = ["up_blocks.0.attentions.1.transformer_blocks.3.attn2.processor"]
|
26 |
+
|
27 |
+
|
28 |
+
class ImageProjModel(torch.nn.Module):
|
29 |
+
"""Projection Model"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
cross_attention_dim=1024,
|
34 |
+
clip_embeddings_dim=1024,
|
35 |
+
clip_extra_context_tokens=4,
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.generator = None
|
40 |
+
self.cross_attention_dim = cross_attention_dim
|
41 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
42 |
+
self.proj = torch.nn.Linear(
|
43 |
+
clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim
|
44 |
+
)
|
45 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
46 |
+
|
47 |
+
def forward(self, image_embeds):
|
48 |
+
embeds = image_embeds
|
49 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
50 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
51 |
+
)
|
52 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
53 |
+
return clip_extra_context_tokens
|
54 |
+
|
55 |
+
|
56 |
+
class MLPProjModel(torch.nn.Module):
|
57 |
+
"""SD model with image prompt"""
|
58 |
+
|
59 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
self.proj = torch.nn.Sequential(
|
63 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
64 |
+
torch.nn.GELU(),
|
65 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
66 |
+
torch.nn.LayerNorm(cross_attention_dim),
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, image_embeds):
|
70 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
71 |
+
return clip_extra_context_tokens
|
72 |
+
|
73 |
+
|
74 |
+
class IPAdapter:
|
75 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
76 |
+
self.device = device
|
77 |
+
self.image_encoder_path = image_encoder_path
|
78 |
+
self.ip_ckpt = ip_ckpt
|
79 |
+
self.num_tokens = num_tokens
|
80 |
+
|
81 |
+
self.pipe = sd_pipe.to(self.device)
|
82 |
+
self.set_ip_adapter()
|
83 |
+
|
84 |
+
# load image encoder
|
85 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
86 |
+
"h94/IP-Adapter",
|
87 |
+
subfolder="models/image_encoder",
|
88 |
+
torch_dtype=torch.float16,
|
89 |
+
).to(self.device, dtype=torch.float16)
|
90 |
+
self.clip_image_processor = CLIPImageProcessor()
|
91 |
+
# image proj model
|
92 |
+
self.image_proj_model = self.init_proj()
|
93 |
+
|
94 |
+
self.load_ip_adapter()
|
95 |
+
|
96 |
+
def init_proj(self):
|
97 |
+
image_proj_model = ImageProjModel(
|
98 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
99 |
+
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
100 |
+
clip_extra_context_tokens=self.num_tokens,
|
101 |
+
).to(self.device, dtype=torch.float16)
|
102 |
+
return image_proj_model
|
103 |
+
|
104 |
+
def set_ip_adapter(self):
|
105 |
+
unet = self.pipe.unet
|
106 |
+
attn_procs = {}
|
107 |
+
for name in unet.attn_processors.keys(): # noqa: SIM118
|
108 |
+
cross_attention_dim = (
|
109 |
+
None
|
110 |
+
if name.endswith("attn1.processor")
|
111 |
+
else unet.config.cross_attention_dim
|
112 |
+
)
|
113 |
+
if name.startswith("mid_block"):
|
114 |
+
hidden_size = unet.config.block_out_channels[-1]
|
115 |
+
elif name.startswith("up_blocks"):
|
116 |
+
block_id = int(name[len("up_blocks.")])
|
117 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
118 |
+
elif name.startswith("down_blocks"):
|
119 |
+
block_id = int(name[len("down_blocks.")])
|
120 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
121 |
+
if cross_attention_dim is None:
|
122 |
+
attn_procs[name] = AttnProcessor()
|
123 |
+
else:
|
124 |
+
attn_procs[name] = IPAttnProcessor(
|
125 |
+
hidden_size=hidden_size,
|
126 |
+
cross_attention_dim=cross_attention_dim,
|
127 |
+
scale=1.0,
|
128 |
+
num_tokens=self.num_tokens,
|
129 |
+
).to(self.device, dtype=torch.float16)
|
130 |
+
unet.set_attn_processor(attn_procs)
|
131 |
+
if hasattr(self.pipe, "controlnet"):
|
132 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
133 |
+
for controlnet in self.pipe.controlnet.nets:
|
134 |
+
controlnet.set_attn_processor(
|
135 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
self.pipe.controlnet.set_attn_processor(
|
139 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
140 |
+
)
|
141 |
+
|
142 |
+
def load_ip_adapter(self):
|
143 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
144 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
145 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
146 |
+
for key in f.keys(): # noqa: SIM118
|
147 |
+
if key.startswith("image_proj."):
|
148 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = (
|
149 |
+
f.get_tensor(key)
|
150 |
+
)
|
151 |
+
elif key.startswith("ip_adapter."):
|
152 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = (
|
153 |
+
f.get_tensor(key)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
157 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
158 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
159 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
160 |
+
|
161 |
+
@torch.inference_mode()
|
162 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
163 |
+
if pil_image is not None:
|
164 |
+
if isinstance(pil_image, Image.Image):
|
165 |
+
pil_image = [pil_image]
|
166 |
+
clip_image = self.clip_image_processor(
|
167 |
+
images=pil_image, return_tensors="pt"
|
168 |
+
).pixel_values
|
169 |
+
clip_image_embeds = self.image_encoder(
|
170 |
+
clip_image.to(self.device, dtype=torch.float16)
|
171 |
+
).image_embeds
|
172 |
+
else:
|
173 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
174 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
175 |
+
uncond_image_prompt_embeds = self.image_proj_model(
|
176 |
+
torch.zeros_like(clip_image_embeds)
|
177 |
+
)
|
178 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
179 |
+
|
180 |
+
def set_scale(self, scale):
|
181 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
182 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
183 |
+
attn_processor.scale = scale
|
184 |
+
|
185 |
+
def generate(
|
186 |
+
self,
|
187 |
+
pil_images=None,
|
188 |
+
clip_image_embeds=None,
|
189 |
+
prompt=None,
|
190 |
+
negative_prompt=None,
|
191 |
+
scale=1.0,
|
192 |
+
num_samples=1,
|
193 |
+
guidance_scale=7.5,
|
194 |
+
num_inference_steps=30,
|
195 |
+
**kwargs,
|
196 |
+
):
|
197 |
+
self.set_scale(scale)
|
198 |
+
|
199 |
+
num_prompts = 1 if pil_images is not None else clip_image_embeds.size(0)
|
200 |
+
|
201 |
+
if prompt is None:
|
202 |
+
prompt = "best quality, high quality"
|
203 |
+
if negative_prompt is None:
|
204 |
+
negative_prompt = (
|
205 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
206 |
+
)
|
207 |
+
|
208 |
+
if not isinstance(prompt, List):
|
209 |
+
prompt = [prompt] * num_prompts
|
210 |
+
if not isinstance(negative_prompt, List):
|
211 |
+
negative_prompt = [negative_prompt] * num_prompts
|
212 |
+
|
213 |
+
image_prompt_embeds_list = []
|
214 |
+
uncond_image_prompt_embeds_list = []
|
215 |
+
for pil_image in pil_images:
|
216 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
217 |
+
pil_image=pil_image, clip_image_embeds=clip_image_embeds
|
218 |
+
)
|
219 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
220 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
221 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
222 |
+
bs_embed * num_samples, seq_len, -1
|
223 |
+
)
|
224 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
225 |
+
1, num_samples, 1
|
226 |
+
)
|
227 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
228 |
+
bs_embed * num_samples, seq_len, -1
|
229 |
+
)
|
230 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
231 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
232 |
+
|
233 |
+
with torch.inference_mode():
|
234 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
235 |
+
prompt,
|
236 |
+
device=self.device,
|
237 |
+
num_images_per_prompt=num_samples,
|
238 |
+
do_classifier_free_guidance=True,
|
239 |
+
negative_prompt=negative_prompt,
|
240 |
+
)
|
241 |
+
prompt_embeds = torch.cat(
|
242 |
+
[prompt_embeds_, *image_prompt_embeds_list], dim=1
|
243 |
+
)
|
244 |
+
negative_prompt_embeds = torch.cat(
|
245 |
+
[negative_prompt_embeds_, *uncond_image_prompt_embeds_list], dim=1
|
246 |
+
)
|
247 |
+
|
248 |
+
# generator = get_generator(seed, self.device)
|
249 |
+
|
250 |
+
images = self.pipe(
|
251 |
+
prompt_embeds=prompt_embeds,
|
252 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
253 |
+
guidance_scale=guidance_scale,
|
254 |
+
num_inference_steps=num_inference_steps,
|
255 |
+
# generator=generator,
|
256 |
+
**kwargs,
|
257 |
+
).images
|
258 |
+
|
259 |
+
return images
|
260 |
+
|
261 |
+
|
262 |
+
class ConceptrolIPAdapter:
|
263 |
+
def __init__(
|
264 |
+
self,
|
265 |
+
sd_pipe,
|
266 |
+
image_encoder_path,
|
267 |
+
ip_ckpt,
|
268 |
+
device,
|
269 |
+
num_tokens=4,
|
270 |
+
global_masking=False,
|
271 |
+
adaptive_scale_mask=False,
|
272 |
+
):
|
273 |
+
self.device = device
|
274 |
+
self.image_encoder_path = image_encoder_path
|
275 |
+
self.ip_ckpt = ip_ckpt
|
276 |
+
self.num_tokens = num_tokens
|
277 |
+
|
278 |
+
self.pipe = sd_pipe.to(self.device)
|
279 |
+
self.set_ip_adapter(global_masking, adaptive_scale_mask)
|
280 |
+
|
281 |
+
# load image encoder
|
282 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
283 |
+
"h94/IP-Adapter",
|
284 |
+
subfolder="models/image_encoder",
|
285 |
+
torch_dtype=torch.float16,
|
286 |
+
).to(self.device, dtype=torch.float16)
|
287 |
+
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
288 |
+
self.clip_image_processor = CLIPImageProcessor()
|
289 |
+
# image proj model
|
290 |
+
self.image_proj_model = self.init_proj()
|
291 |
+
|
292 |
+
self.load_ip_adapter()
|
293 |
+
|
294 |
+
def init_proj(self):
|
295 |
+
image_proj_model = ImageProjModel(
|
296 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
297 |
+
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
298 |
+
clip_extra_context_tokens=self.num_tokens,
|
299 |
+
).to(self.device, dtype=torch.float16)
|
300 |
+
return image_proj_model
|
301 |
+
|
302 |
+
def set_ip_adapter(self, global_masking, adaptive_scale_mask):
|
303 |
+
unet = self.pipe.unet
|
304 |
+
attn_procs = {}
|
305 |
+
for name in unet.attn_processors.keys(): # noqa: SIM118
|
306 |
+
cross_attention_dim = (
|
307 |
+
None
|
308 |
+
if name.endswith("attn1.processor")
|
309 |
+
else unet.config.cross_attention_dim
|
310 |
+
)
|
311 |
+
if name.startswith("mid_block"):
|
312 |
+
hidden_size = unet.config.block_out_channels[-1]
|
313 |
+
elif name.startswith("up_blocks"):
|
314 |
+
block_id = int(name[len("up_blocks.")])
|
315 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
316 |
+
elif name.startswith("down_blocks"):
|
317 |
+
block_id = int(name[len("down_blocks.")])
|
318 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
319 |
+
if cross_attention_dim is None:
|
320 |
+
attn_procs[name] = AttnProcessor()
|
321 |
+
else:
|
322 |
+
attn_procs[name] = ConceptrolAttnProcessor(
|
323 |
+
hidden_size=hidden_size,
|
324 |
+
cross_attention_dim=cross_attention_dim,
|
325 |
+
scale=1.0,
|
326 |
+
num_tokens=self.num_tokens,
|
327 |
+
name=name,
|
328 |
+
global_masking=global_masking,
|
329 |
+
adaptive_scale_mask=adaptive_scale_mask,
|
330 |
+
concept_mask_layer=SD_CONCEPT_LAYER,
|
331 |
+
).to(self.device, dtype=torch.float16)
|
332 |
+
unet.set_attn_processor(attn_procs)
|
333 |
+
for name in unet.attn_processors.keys(): # noqa: SIM118
|
334 |
+
cross_attention_dim = (
|
335 |
+
None
|
336 |
+
if name.endswith("attn1.processor")
|
337 |
+
else unet.config.cross_attention_dim
|
338 |
+
)
|
339 |
+
if cross_attention_dim is not None:
|
340 |
+
unet.attn_processors[name].set_global_view(unet.attn_processors)
|
341 |
+
if hasattr(self.pipe, "controlnet"):
|
342 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
343 |
+
for controlnet in self.pipe.controlnet.nets:
|
344 |
+
controlnet.set_attn_processor(
|
345 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
346 |
+
)
|
347 |
+
else:
|
348 |
+
self.pipe.controlnet.set_attn_processor(
|
349 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
350 |
+
)
|
351 |
+
|
352 |
+
def load_ip_adapter(self):
|
353 |
+
ckpt_path = self.ip_ckpt
|
354 |
+
# If the checkpoint path is not an existing file and is not a full URL,
|
355 |
+
# assume it's a Huggingface repository specification.
|
356 |
+
if not os.path.exists(self.ip_ckpt) and not self.ip_ckpt.startswith("http"):
|
357 |
+
# If a colon is present, use it to split repo_id and filename.
|
358 |
+
if ":" in self.ip_ckpt:
|
359 |
+
repo_id, filename = self.ip_ckpt.split(":", 1)
|
360 |
+
else:
|
361 |
+
parts = self.ip_ckpt.split('/')
|
362 |
+
if len(parts) > 2:
|
363 |
+
# For example, "h94/IP-Adapter/models/ip-adapter-plus_sd15.bin"
|
364 |
+
# repo_id becomes "h94/IP-Adapter" and filename "models/ip-adapter-plus_sd15.bin".
|
365 |
+
repo_id = '/'.join(parts[:2])
|
366 |
+
filename = '/'.join(parts[2:])
|
367 |
+
else:
|
368 |
+
repo_id = self.ip_ckpt
|
369 |
+
filename = "models/ip-adapter-plus_sd15.bin" # default filename if not specified
|
370 |
+
ckpt_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
371 |
+
|
372 |
+
# Load the state dictionary from the checkpoint file.
|
373 |
+
if os.path.splitext(ckpt_path)[-1] == ".safetensors":
|
374 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
375 |
+
with safe_open(ckpt_path, framework="pt", device="cpu") as f:
|
376 |
+
for key in f.keys():
|
377 |
+
if key.startswith("image_proj."):
|
378 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
379 |
+
elif key.startswith("ip_adapter."):
|
380 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
381 |
+
else:
|
382 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
383 |
+
|
384 |
+
# Load the state dictionaries into the corresponding models.
|
385 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
386 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
387 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
388 |
+
|
389 |
+
@torch.inference_mode()
|
390 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
391 |
+
if pil_image is not None:
|
392 |
+
if isinstance(pil_image, Image.Image):
|
393 |
+
pil_image = [pil_image]
|
394 |
+
clip_image = self.clip_image_processor(
|
395 |
+
images=pil_image, return_tensors="pt"
|
396 |
+
).pixel_values
|
397 |
+
clip_image_embeds = self.image_encoder(
|
398 |
+
clip_image.to(self.device, dtype=torch.float16)
|
399 |
+
).image_embeds
|
400 |
+
else:
|
401 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
402 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
403 |
+
uncond_image_prompt_embeds = self.image_proj_model(
|
404 |
+
torch.zeros_like(clip_image_embeds)
|
405 |
+
)
|
406 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
407 |
+
|
408 |
+
def set_scale(self, scale):
|
409 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
410 |
+
if isinstance(attn_processor, ConceptrolAttnProcessor):
|
411 |
+
attn_processor.scale = scale
|
412 |
+
|
413 |
+
def load_textual_concept(self, prompt, subjects):
|
414 |
+
tokens = self.tokenizer.tokenize(prompt)
|
415 |
+
textual_concept_idxs = []
|
416 |
+
offset = 1 # TODO: change back to 1 if not true
|
417 |
+
|
418 |
+
for subject in subjects:
|
419 |
+
subject_tokens = self.tokenizer.tokenize(subject)
|
420 |
+
start_idx = tokens.index(subject_tokens[0]) + offset
|
421 |
+
end_idx = tokens.index(subject_tokens[-1]) + offset
|
422 |
+
textual_concept_idxs.append((start_idx, end_idx + 1))
|
423 |
+
print("Locate:", subject, start_idx, end_idx + 1)
|
424 |
+
|
425 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
426 |
+
if isinstance(attn_processor, ConceptrolAttnProcessor):
|
427 |
+
attn_processor.textual_concept_idxs = textual_concept_idxs
|
428 |
+
|
429 |
+
def generate(
|
430 |
+
self,
|
431 |
+
pil_images=None,
|
432 |
+
clip_image_embeds=None,
|
433 |
+
prompt=None,
|
434 |
+
negative_prompt=None,
|
435 |
+
scale=1.0,
|
436 |
+
num_samples=1,
|
437 |
+
seed=42,
|
438 |
+
subjects=None,
|
439 |
+
guidance_scale=7.5,
|
440 |
+
num_inference_steps=30,
|
441 |
+
**kwargs,
|
442 |
+
):
|
443 |
+
self.set_scale(scale)
|
444 |
+
|
445 |
+
num_prompts = 1 # not support multiple prompts
|
446 |
+
|
447 |
+
if prompt is None:
|
448 |
+
prompt = "best quality, high quality"
|
449 |
+
if negative_prompt is None:
|
450 |
+
negative_prompt = (
|
451 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
452 |
+
)
|
453 |
+
|
454 |
+
if subjects:
|
455 |
+
self.load_textual_concept(prompt, subjects)
|
456 |
+
else:
|
457 |
+
raise ValueError("Subjects must be provided")
|
458 |
+
|
459 |
+
if not isinstance(prompt, List):
|
460 |
+
prompt = [prompt] * num_prompts
|
461 |
+
if not isinstance(negative_prompt, List):
|
462 |
+
negative_prompt = [negative_prompt] * num_prompts
|
463 |
+
|
464 |
+
image_prompt_embeds_list = []
|
465 |
+
uncond_image_prompt_embeds_list = []
|
466 |
+
for pil_image in pil_images:
|
467 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
468 |
+
pil_image=pil_image, clip_image_embeds=clip_image_embeds
|
469 |
+
)
|
470 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
471 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
472 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
473 |
+
bs_embed * num_samples, seq_len, -1
|
474 |
+
)
|
475 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
476 |
+
1, num_samples, 1
|
477 |
+
)
|
478 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
479 |
+
bs_embed * num_samples, seq_len, -1
|
480 |
+
)
|
481 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
482 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
483 |
+
|
484 |
+
with torch.inference_mode():
|
485 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
486 |
+
prompt,
|
487 |
+
device=self.device,
|
488 |
+
num_images_per_prompt=num_samples,
|
489 |
+
do_classifier_free_guidance=True,
|
490 |
+
negative_prompt=negative_prompt,
|
491 |
+
)
|
492 |
+
prompt_embeds = torch.cat(
|
493 |
+
[prompt_embeds_, *image_prompt_embeds_list], dim=1
|
494 |
+
)
|
495 |
+
negative_prompt_embeds = torch.cat(
|
496 |
+
[negative_prompt_embeds_, *uncond_image_prompt_embeds_list], dim=1
|
497 |
+
)
|
498 |
+
|
499 |
+
generator = get_generator(seed, self.device)
|
500 |
+
|
501 |
+
images = self.pipe(
|
502 |
+
prompt_embeds=prompt_embeds,
|
503 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
504 |
+
guidance_scale=guidance_scale,
|
505 |
+
num_inference_steps=num_inference_steps,
|
506 |
+
generator=generator,
|
507 |
+
**kwargs,
|
508 |
+
).images
|
509 |
+
|
510 |
+
return images
|
511 |
+
|
512 |
+
|
513 |
+
class IPAdapterXL(IPAdapter):
|
514 |
+
"""SDXL"""
|
515 |
+
|
516 |
+
def generate(
|
517 |
+
self,
|
518 |
+
pil_images,
|
519 |
+
prompt=None,
|
520 |
+
negative_prompt=None,
|
521 |
+
scale=1.0,
|
522 |
+
num_samples=1,
|
523 |
+
seed=None,
|
524 |
+
num_inference_steps=30,
|
525 |
+
**kwargs,
|
526 |
+
):
|
527 |
+
self.set_scale(scale)
|
528 |
+
|
529 |
+
num_prompts = 1 # not support multiple prompts
|
530 |
+
|
531 |
+
if prompt is None:
|
532 |
+
prompt = "best quality, high quality"
|
533 |
+
if negative_prompt is None:
|
534 |
+
negative_prompt = (
|
535 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
536 |
+
)
|
537 |
+
|
538 |
+
if not isinstance(prompt, List):
|
539 |
+
prompt = [prompt] * num_prompts
|
540 |
+
if not isinstance(negative_prompt, List):
|
541 |
+
negative_prompt = [negative_prompt] * num_prompts
|
542 |
+
|
543 |
+
image_prompt_embeds_list = []
|
544 |
+
uncond_image_prompt_embeds_list = []
|
545 |
+
for pil_image in pil_images:
|
546 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
547 |
+
pil_image=pil_image
|
548 |
+
)
|
549 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
550 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
551 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
552 |
+
bs_embed * num_samples, seq_len, -1
|
553 |
+
)
|
554 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
555 |
+
1, num_samples, 1
|
556 |
+
)
|
557 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
558 |
+
bs_embed * num_samples, seq_len, -1
|
559 |
+
)
|
560 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
561 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
562 |
+
|
563 |
+
with torch.inference_mode():
|
564 |
+
(
|
565 |
+
prompt_embeds,
|
566 |
+
negative_prompt_embeds,
|
567 |
+
pooled_prompt_embeds,
|
568 |
+
negative_pooled_prompt_embeds,
|
569 |
+
) = self.pipe.encode_prompt(
|
570 |
+
prompt,
|
571 |
+
num_images_per_prompt=num_samples,
|
572 |
+
do_classifier_free_guidance=True,
|
573 |
+
negative_prompt=negative_prompt,
|
574 |
+
)
|
575 |
+
prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1)
|
576 |
+
negative_prompt_embeds = torch.cat(
|
577 |
+
[negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1
|
578 |
+
)
|
579 |
+
|
580 |
+
generator = get_generator(seed, self.device)
|
581 |
+
|
582 |
+
images = self.pipe(
|
583 |
+
prompt_embeds=prompt_embeds,
|
584 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
585 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
586 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
587 |
+
num_inference_steps=num_inference_steps,
|
588 |
+
generator=generator,
|
589 |
+
**kwargs,
|
590 |
+
).images
|
591 |
+
|
592 |
+
return images
|
593 |
+
|
594 |
+
|
595 |
+
class ConceptrolIPAdapterXL(ConceptrolIPAdapter):
|
596 |
+
"""SDXL"""
|
597 |
+
|
598 |
+
def set_ip_adapter(self, global_masking, adaptive_scale_mask):
|
599 |
+
unet = self.pipe.unet
|
600 |
+
attn_procs = {}
|
601 |
+
for name in unet.attn_processors.keys(): # noqa: SIM118
|
602 |
+
cross_attention_dim = (
|
603 |
+
None
|
604 |
+
if name.endswith("attn1.processor")
|
605 |
+
else unet.config.cross_attention_dim
|
606 |
+
)
|
607 |
+
if name.startswith("mid_block"):
|
608 |
+
hidden_size = unet.config.block_out_channels[-1]
|
609 |
+
elif name.startswith("up_blocks"):
|
610 |
+
block_id = int(name[len("up_blocks.")])
|
611 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
612 |
+
elif name.startswith("down_blocks"):
|
613 |
+
block_id = int(name[len("down_blocks.")])
|
614 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
615 |
+
if cross_attention_dim is None:
|
616 |
+
attn_procs[name] = AttnProcessor()
|
617 |
+
else:
|
618 |
+
attn_procs[name] = ConceptrolAttnProcessor(
|
619 |
+
hidden_size=hidden_size,
|
620 |
+
cross_attention_dim=cross_attention_dim,
|
621 |
+
scale=1.0,
|
622 |
+
num_tokens=self.num_tokens,
|
623 |
+
name=name,
|
624 |
+
global_masking=global_masking,
|
625 |
+
adaptive_scale_mask=adaptive_scale_mask,
|
626 |
+
concept_mask_layer=SDXL_CONCEPT_LAYER,
|
627 |
+
).to(self.device, dtype=torch.float16)
|
628 |
+
unet.set_attn_processor(attn_procs)
|
629 |
+
for name in unet.attn_processors.keys(): # noqa: SIM118
|
630 |
+
cross_attention_dim = (
|
631 |
+
None
|
632 |
+
if name.endswith("attn1.processor")
|
633 |
+
else unet.config.cross_attention_dim
|
634 |
+
)
|
635 |
+
if cross_attention_dim is not None:
|
636 |
+
unet.attn_processors[name].set_global_view(unet.attn_processors)
|
637 |
+
if hasattr(self.pipe, "controlnet"):
|
638 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
639 |
+
for controlnet in self.pipe.controlnet.nets:
|
640 |
+
controlnet.set_attn_processor(
|
641 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
642 |
+
)
|
643 |
+
else:
|
644 |
+
self.pipe.controlnet.set_attn_processor(
|
645 |
+
CNAttnProcessor(num_tokens=self.num_tokens)
|
646 |
+
)
|
647 |
+
|
648 |
+
def generate(
|
649 |
+
self,
|
650 |
+
pil_images=None,
|
651 |
+
prompt=None,
|
652 |
+
negative_prompt=None,
|
653 |
+
subjects=None,
|
654 |
+
scale=1.0,
|
655 |
+
num_samples=1,
|
656 |
+
num_inference_steps=30,
|
657 |
+
seed=None,
|
658 |
+
**kwargs,
|
659 |
+
):
|
660 |
+
self.set_scale(scale)
|
661 |
+
|
662 |
+
num_prompts = 1 # not support multiple prompts
|
663 |
+
|
664 |
+
if prompt is None:
|
665 |
+
prompt = "best quality, high quality"
|
666 |
+
if negative_prompt is None:
|
667 |
+
negative_prompt = (
|
668 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
669 |
+
)
|
670 |
+
|
671 |
+
if subjects:
|
672 |
+
self.load_textual_concept(prompt, subjects)
|
673 |
+
else:
|
674 |
+
raise ValueError("Subjects must be provided")
|
675 |
+
|
676 |
+
if not isinstance(prompt, List):
|
677 |
+
prompt = [prompt] * num_prompts
|
678 |
+
if not isinstance(negative_prompt, List):
|
679 |
+
negative_prompt = [negative_prompt] * num_prompts
|
680 |
+
|
681 |
+
image_prompt_embeds_list = []
|
682 |
+
uncond_image_prompt_embeds_list = []
|
683 |
+
for pil_image in pil_images:
|
684 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
685 |
+
pil_image=pil_image
|
686 |
+
)
|
687 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
688 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
689 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
690 |
+
bs_embed * num_samples, seq_len, -1
|
691 |
+
)
|
692 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
693 |
+
1, num_samples, 1
|
694 |
+
)
|
695 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
696 |
+
bs_embed * num_samples, seq_len, -1
|
697 |
+
)
|
698 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
699 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
700 |
+
|
701 |
+
with torch.inference_mode():
|
702 |
+
(
|
703 |
+
prompt_embeds,
|
704 |
+
negative_prompt_embeds,
|
705 |
+
pooled_prompt_embeds,
|
706 |
+
negative_pooled_prompt_embeds,
|
707 |
+
) = self.pipe.encode_prompt(
|
708 |
+
prompt,
|
709 |
+
num_images_per_prompt=num_samples,
|
710 |
+
do_classifier_free_guidance=True,
|
711 |
+
negative_prompt=negative_prompt,
|
712 |
+
)
|
713 |
+
prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1)
|
714 |
+
negative_prompt_embeds = torch.cat(
|
715 |
+
[negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1
|
716 |
+
)
|
717 |
+
|
718 |
+
generator = get_generator(seed, self.device)
|
719 |
+
|
720 |
+
images = self.pipe(
|
721 |
+
prompt_embeds=prompt_embeds,
|
722 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
723 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
724 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
725 |
+
num_inference_steps=num_inference_steps,
|
726 |
+
generator=generator,
|
727 |
+
**kwargs,
|
728 |
+
).images
|
729 |
+
|
730 |
+
return images
|
731 |
+
|
732 |
+
|
733 |
+
class IPAdapterPlus(IPAdapter):
|
734 |
+
"""IP-Adapter with fine-grained features"""
|
735 |
+
|
736 |
+
def init_proj(self):
|
737 |
+
image_proj_model = Resampler(
|
738 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
739 |
+
depth=4,
|
740 |
+
dim_head=64,
|
741 |
+
heads=12,
|
742 |
+
num_queries=self.num_tokens,
|
743 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
744 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
745 |
+
ff_mult=4,
|
746 |
+
).to(self.device, dtype=torch.float16)
|
747 |
+
return image_proj_model
|
748 |
+
|
749 |
+
@torch.inference_mode()
|
750 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
751 |
+
if isinstance(pil_image, Image.Image):
|
752 |
+
pil_image = [pil_image]
|
753 |
+
clip_image = self.clip_image_processor(
|
754 |
+
images=pil_image, return_tensors="pt"
|
755 |
+
).pixel_values
|
756 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
757 |
+
clip_image_embeds = self.image_encoder(
|
758 |
+
clip_image, output_hidden_states=True
|
759 |
+
).hidden_states[-2]
|
760 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
761 |
+
uncond_clip_image_embeds = self.image_encoder(
|
762 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
763 |
+
).hidden_states[-2]
|
764 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
765 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
766 |
+
|
767 |
+
|
768 |
+
class ConceptrolIPAdapterPlus(ConceptrolIPAdapter):
|
769 |
+
"""IP-Adapter with fine-grained features"""
|
770 |
+
|
771 |
+
def init_proj(self):
|
772 |
+
image_proj_model = Resampler(
|
773 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
774 |
+
depth=4,
|
775 |
+
dim_head=64,
|
776 |
+
heads=12,
|
777 |
+
num_queries=self.num_tokens,
|
778 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
779 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
780 |
+
ff_mult=4,
|
781 |
+
).to(self.device, dtype=torch.float16)
|
782 |
+
return image_proj_model
|
783 |
+
|
784 |
+
@torch.inference_mode()
|
785 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
786 |
+
if isinstance(pil_image, Image.Image):
|
787 |
+
pil_image = [pil_image]
|
788 |
+
clip_image = self.clip_image_processor(
|
789 |
+
images=pil_image, return_tensors="pt"
|
790 |
+
).pixel_values
|
791 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
792 |
+
clip_image_embeds = self.image_encoder(
|
793 |
+
clip_image, output_hidden_states=True
|
794 |
+
).hidden_states[-2]
|
795 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
796 |
+
uncond_clip_image_embeds = self.image_encoder(
|
797 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
798 |
+
).hidden_states[-2]
|
799 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
800 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
801 |
+
|
802 |
+
|
803 |
+
class IPAdapterFull(IPAdapterPlus):
|
804 |
+
"""IP-Adapter with full features"""
|
805 |
+
|
806 |
+
def init_proj(self):
|
807 |
+
image_proj_model = MLPProjModel(
|
808 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
809 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
810 |
+
).to(self.device, dtype=torch.float16)
|
811 |
+
return image_proj_model
|
812 |
+
|
813 |
+
|
814 |
+
class IPAdapterPlusXL(IPAdapter):
|
815 |
+
"""SDXL"""
|
816 |
+
|
817 |
+
def init_proj(self):
|
818 |
+
image_proj_model = Resampler(
|
819 |
+
dim=1280,
|
820 |
+
depth=4,
|
821 |
+
dim_head=64,
|
822 |
+
heads=20,
|
823 |
+
num_queries=self.num_tokens,
|
824 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
825 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
826 |
+
ff_mult=4,
|
827 |
+
).to(self.device, dtype=torch.float16)
|
828 |
+
return image_proj_model
|
829 |
+
|
830 |
+
@torch.inference_mode()
|
831 |
+
def get_image_embeds(self, pil_image):
|
832 |
+
if isinstance(pil_image, Image.Image):
|
833 |
+
pil_image = [pil_image]
|
834 |
+
clip_image = self.clip_image_processor(
|
835 |
+
images=pil_image, return_tensors="pt"
|
836 |
+
).pixel_values
|
837 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
838 |
+
clip_image_embeds = self.image_encoder(
|
839 |
+
clip_image, output_hidden_states=True
|
840 |
+
).hidden_states[-2]
|
841 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
842 |
+
uncond_clip_image_embeds = self.image_encoder(
|
843 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
844 |
+
).hidden_states[-2]
|
845 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
846 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
847 |
+
|
848 |
+
def generate(
|
849 |
+
self,
|
850 |
+
pil_images=None,
|
851 |
+
prompt=None,
|
852 |
+
negative_prompt=None,
|
853 |
+
scale=1.0,
|
854 |
+
num_samples=1,
|
855 |
+
seed=42,
|
856 |
+
num_inference_steps=30,
|
857 |
+
**kwargs,
|
858 |
+
):
|
859 |
+
self.set_scale(scale)
|
860 |
+
|
861 |
+
num_prompts = 1 # not support multiple prompts
|
862 |
+
|
863 |
+
if prompt is None:
|
864 |
+
prompt = "best quality, high quality"
|
865 |
+
if negative_prompt is None:
|
866 |
+
negative_prompt = (
|
867 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
868 |
+
)
|
869 |
+
|
870 |
+
if not isinstance(prompt, List):
|
871 |
+
prompt = [prompt] * num_prompts
|
872 |
+
if not isinstance(negative_prompt, List):
|
873 |
+
negative_prompt = [negative_prompt] * num_prompts
|
874 |
+
|
875 |
+
image_prompt_embeds_list = []
|
876 |
+
uncond_image_prompt_embeds_list = []
|
877 |
+
for pil_image in pil_images:
|
878 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
879 |
+
pil_image=pil_image
|
880 |
+
)
|
881 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
882 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
883 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
884 |
+
bs_embed * num_samples, seq_len, -1
|
885 |
+
)
|
886 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
887 |
+
1, num_samples, 1
|
888 |
+
)
|
889 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
890 |
+
bs_embed * num_samples, seq_len, -1
|
891 |
+
)
|
892 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
893 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
894 |
+
|
895 |
+
with torch.inference_mode():
|
896 |
+
(
|
897 |
+
prompt_embeds,
|
898 |
+
negative_prompt_embeds,
|
899 |
+
pooled_prompt_embeds,
|
900 |
+
negative_pooled_prompt_embeds,
|
901 |
+
) = self.pipe.encode_prompt(
|
902 |
+
prompt,
|
903 |
+
num_images_per_prompt=num_samples,
|
904 |
+
do_classifier_free_guidance=True,
|
905 |
+
negative_prompt=negative_prompt,
|
906 |
+
)
|
907 |
+
prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1)
|
908 |
+
negative_prompt_embeds = torch.cat(
|
909 |
+
[negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1
|
910 |
+
)
|
911 |
+
|
912 |
+
generator = get_generator(seed, self.device)
|
913 |
+
|
914 |
+
images = self.pipe(
|
915 |
+
prompt_embeds=prompt_embeds,
|
916 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
917 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
918 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
919 |
+
num_inference_steps=num_inference_steps,
|
920 |
+
generator=generator,
|
921 |
+
**kwargs,
|
922 |
+
).images
|
923 |
+
|
924 |
+
return images
|
925 |
+
|
926 |
+
|
927 |
+
class ConceptrolIPAdapterPlusXL(ConceptrolIPAdapterXL):
|
928 |
+
"""SDXL"""
|
929 |
+
|
930 |
+
def init_proj(self):
|
931 |
+
image_proj_model = Resampler(
|
932 |
+
dim=1280,
|
933 |
+
depth=4,
|
934 |
+
dim_head=64,
|
935 |
+
heads=20,
|
936 |
+
num_queries=self.num_tokens,
|
937 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
938 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
939 |
+
ff_mult=4,
|
940 |
+
).to(self.device, dtype=torch.float16)
|
941 |
+
return image_proj_model
|
942 |
+
|
943 |
+
@torch.inference_mode()
|
944 |
+
def get_image_embeds(self, pil_image):
|
945 |
+
if isinstance(pil_image, Image.Image):
|
946 |
+
pil_image = [pil_image]
|
947 |
+
clip_image = self.clip_image_processor(
|
948 |
+
images=pil_image, return_tensors="pt"
|
949 |
+
).pixel_values
|
950 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
951 |
+
clip_image_embeds = self.image_encoder(
|
952 |
+
clip_image, output_hidden_states=True
|
953 |
+
).hidden_states[-2]
|
954 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
955 |
+
uncond_clip_image_embeds = self.image_encoder(
|
956 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
957 |
+
).hidden_states[-2]
|
958 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
959 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
960 |
+
|
961 |
+
def generate(
|
962 |
+
self,
|
963 |
+
pil_images=None,
|
964 |
+
prompt=None,
|
965 |
+
negative_prompt=None,
|
966 |
+
scale=1.0,
|
967 |
+
subjects=None,
|
968 |
+
num_samples=1,
|
969 |
+
seed=42,
|
970 |
+
num_inference_steps=30,
|
971 |
+
**kwargs,
|
972 |
+
):
|
973 |
+
self.set_scale(scale)
|
974 |
+
|
975 |
+
num_prompts = 1 # not support multiple prompts
|
976 |
+
|
977 |
+
if prompt is None:
|
978 |
+
prompt = "best quality, high quality"
|
979 |
+
if negative_prompt is None:
|
980 |
+
negative_prompt = (
|
981 |
+
"monochrome, lowres, bad anatomy, worst quality, low quality"
|
982 |
+
)
|
983 |
+
|
984 |
+
if subjects:
|
985 |
+
self.load_textual_concept(prompt, subjects)
|
986 |
+
else:
|
987 |
+
raise ValueError("Subjects must be provided")
|
988 |
+
|
989 |
+
if not isinstance(prompt, List):
|
990 |
+
prompt = [prompt] * num_prompts
|
991 |
+
if not isinstance(negative_prompt, List):
|
992 |
+
negative_prompt = [negative_prompt] * num_prompts
|
993 |
+
|
994 |
+
image_prompt_embeds_list = []
|
995 |
+
uncond_image_prompt_embeds_list = []
|
996 |
+
for pil_image in pil_images:
|
997 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
998 |
+
pil_image=pil_image
|
999 |
+
)
|
1000 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
1001 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
1002 |
+
image_prompt_embeds = image_prompt_embeds.view(
|
1003 |
+
bs_embed * num_samples, seq_len, -1
|
1004 |
+
)
|
1005 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(
|
1006 |
+
1, num_samples, 1
|
1007 |
+
)
|
1008 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(
|
1009 |
+
bs_embed * num_samples, seq_len, -1
|
1010 |
+
)
|
1011 |
+
image_prompt_embeds_list.append(image_prompt_embeds)
|
1012 |
+
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds)
|
1013 |
+
|
1014 |
+
with torch.inference_mode():
|
1015 |
+
(
|
1016 |
+
prompt_embeds,
|
1017 |
+
negative_prompt_embeds,
|
1018 |
+
pooled_prompt_embeds,
|
1019 |
+
negative_pooled_prompt_embeds,
|
1020 |
+
) = self.pipe.encode_prompt(
|
1021 |
+
prompt,
|
1022 |
+
num_images_per_prompt=num_samples,
|
1023 |
+
do_classifier_free_guidance=True,
|
1024 |
+
negative_prompt=negative_prompt,
|
1025 |
+
)
|
1026 |
+
prompt_embeds = torch.cat([prompt_embeds, *image_prompt_embeds_list], dim=1)
|
1027 |
+
negative_prompt_embeds = torch.cat(
|
1028 |
+
[negative_prompt_embeds, *uncond_image_prompt_embeds_list], dim=1
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
generator = get_generator(seed, self.device)
|
1032 |
+
|
1033 |
+
images = self.pipe(
|
1034 |
+
prompt_embeds=prompt_embeds,
|
1035 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1036 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1037 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1038 |
+
num_inference_steps=num_inference_steps,
|
1039 |
+
generator=generator,
|
1040 |
+
**kwargs,
|
1041 |
+
).images
|
1042 |
+
|
1043 |
+
return images
|
ip_adapter/resampler.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
|
11 |
+
|
12 |
+
# FFN
|
13 |
+
def FeedForward(dim, mult=4):
|
14 |
+
inner_dim = int(dim * mult)
|
15 |
+
return nn.Sequential(
|
16 |
+
nn.LayerNorm(dim),
|
17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def reshape_tensor(x, heads):
|
24 |
+
bs, length, width = x.shape
|
25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
+
x = x.view(bs, length, heads, -1)
|
27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
+
x = x.transpose(1, 2)
|
29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
+
x = x.reshape(bs, heads, length, -1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class PerceiverAttention(nn.Module):
|
35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
+
super().__init__()
|
37 |
+
self.scale = dim_head**-0.5
|
38 |
+
self.dim_head = dim_head
|
39 |
+
self.heads = heads
|
40 |
+
inner_dim = dim_head * heads
|
41 |
+
|
42 |
+
self.norm1 = nn.LayerNorm(dim)
|
43 |
+
self.norm2 = nn.LayerNorm(dim)
|
44 |
+
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
+
|
49 |
+
def forward(self, x, latents):
|
50 |
+
"""
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): image features
|
53 |
+
shape (b, n1, D)
|
54 |
+
latent (torch.Tensor): latent features
|
55 |
+
shape (b, n2, D)
|
56 |
+
"""
|
57 |
+
x = self.norm1(x)
|
58 |
+
latents = self.norm2(latents)
|
59 |
+
|
60 |
+
b, l, _ = latents.shape
|
61 |
+
|
62 |
+
q = self.to_q(latents)
|
63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
+
|
66 |
+
q = reshape_tensor(q, self.heads)
|
67 |
+
k = reshape_tensor(k, self.heads)
|
68 |
+
v = reshape_tensor(v, self.heads)
|
69 |
+
|
70 |
+
# attention
|
71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
+
weight = (q * scale) @ (k * scale).transpose(
|
73 |
+
-2, -1
|
74 |
+
) # More stable with f16 than dividing afterwards
|
75 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
76 |
+
out = weight @ v
|
77 |
+
|
78 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
79 |
+
|
80 |
+
return self.to_out(out)
|
81 |
+
|
82 |
+
|
83 |
+
class Resampler(nn.Module):
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
dim=1024,
|
87 |
+
depth=8,
|
88 |
+
dim_head=64,
|
89 |
+
heads=16,
|
90 |
+
num_queries=8,
|
91 |
+
embedding_dim=768,
|
92 |
+
output_dim=1024,
|
93 |
+
ff_mult=4,
|
94 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
95 |
+
apply_pos_emb: bool = False,
|
96 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.pos_emb = (
|
100 |
+
nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
101 |
+
)
|
102 |
+
|
103 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
104 |
+
|
105 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
106 |
+
|
107 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
108 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
109 |
+
|
110 |
+
self.to_latents_from_mean_pooled_seq = (
|
111 |
+
nn.Sequential(
|
112 |
+
nn.LayerNorm(dim),
|
113 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
114 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
115 |
+
)
|
116 |
+
if num_latents_mean_pooled > 0
|
117 |
+
else None
|
118 |
+
)
|
119 |
+
|
120 |
+
self.layers = nn.ModuleList([])
|
121 |
+
for _ in range(depth):
|
122 |
+
self.layers.append(
|
123 |
+
nn.ModuleList(
|
124 |
+
[
|
125 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
126 |
+
FeedForward(dim=dim, mult=ff_mult),
|
127 |
+
]
|
128 |
+
)
|
129 |
+
)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
if self.pos_emb is not None:
|
133 |
+
n, device = x.shape[1], x.device
|
134 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
135 |
+
x = x + pos_emb
|
136 |
+
|
137 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
138 |
+
|
139 |
+
x = self.proj_in(x)
|
140 |
+
|
141 |
+
if self.to_latents_from_mean_pooled_seq:
|
142 |
+
meanpooled_seq = masked_mean(
|
143 |
+
x,
|
144 |
+
dim=1,
|
145 |
+
mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool),
|
146 |
+
)
|
147 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
148 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
149 |
+
|
150 |
+
for attn, ff in self.layers:
|
151 |
+
latents = attn(x, latents) + latents
|
152 |
+
latents = ff(latents) + latents
|
153 |
+
|
154 |
+
latents = self.proj_out(latents)
|
155 |
+
return self.norm_out(latents)
|
156 |
+
|
157 |
+
|
158 |
+
class ResamplerZeroInOut(nn.Module):
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
dim=1024,
|
162 |
+
depth=8,
|
163 |
+
dim_head=64,
|
164 |
+
heads=16,
|
165 |
+
num_queries=8,
|
166 |
+
embedding_dim=768,
|
167 |
+
output_dim=1024,
|
168 |
+
ff_mult=4,
|
169 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
170 |
+
apply_pos_emb: bool = False,
|
171 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.pos_emb = (
|
175 |
+
nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
176 |
+
)
|
177 |
+
|
178 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
179 |
+
|
180 |
+
self.proj_in_zero = nn.Linear(embedding_dim, embedding_dim, bias=False)
|
181 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
182 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
183 |
+
self.proj_out_zero = nn.Linear(output_dim, output_dim, bias=False)
|
184 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
185 |
+
|
186 |
+
nn.init.zeros_(self.proj_in_zero.weight)
|
187 |
+
nn.init.zeros_(self.proj_out_zero.weight)
|
188 |
+
|
189 |
+
self.to_latents_from_mean_pooled_seq = (
|
190 |
+
nn.Sequential(
|
191 |
+
nn.LayerNorm(dim),
|
192 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
193 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
194 |
+
)
|
195 |
+
if num_latents_mean_pooled > 0
|
196 |
+
else None
|
197 |
+
)
|
198 |
+
|
199 |
+
self.layers = nn.ModuleList([])
|
200 |
+
for _ in range(depth):
|
201 |
+
self.layers.append(
|
202 |
+
nn.ModuleList(
|
203 |
+
[
|
204 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
205 |
+
FeedForward(dim=dim, mult=ff_mult),
|
206 |
+
]
|
207 |
+
)
|
208 |
+
)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
if self.pos_emb is not None:
|
212 |
+
n, device = x.shape[1], x.device
|
213 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
214 |
+
x = x + pos_emb
|
215 |
+
|
216 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
217 |
+
|
218 |
+
x = self.proj_in_zero(x)
|
219 |
+
x = self.proj_in(x)
|
220 |
+
|
221 |
+
if self.to_latents_from_mean_pooled_seq:
|
222 |
+
meanpooled_seq = masked_mean(
|
223 |
+
x,
|
224 |
+
dim=1,
|
225 |
+
mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool),
|
226 |
+
)
|
227 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
228 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
229 |
+
|
230 |
+
for attn, ff in self.layers:
|
231 |
+
latents = attn(x, latents) + latents
|
232 |
+
latents = ff(latents) + latents
|
233 |
+
|
234 |
+
latents = self.proj_out(latents)
|
235 |
+
latents = self.proj_out_zero(latents)
|
236 |
+
return self.norm_out(latents)
|
237 |
+
|
238 |
+
|
239 |
+
def masked_mean(t, *, dim, mask=None):
|
240 |
+
if mask is None:
|
241 |
+
return t.mean(dim=dim)
|
242 |
+
|
243 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
244 |
+
mask = rearrange(mask, "b n -> b n 1")
|
245 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
246 |
+
|
247 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
ip_adapter/utils.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# global variable
|
7 |
+
raw_attn_maps = {}
|
8 |
+
raw_ip_attn_maps = {}
|
9 |
+
attn_maps = {}
|
10 |
+
ip_attn_maps = {}
|
11 |
+
|
12 |
+
|
13 |
+
def hook_fn(name):
|
14 |
+
def forward_hook(module, input, output):
|
15 |
+
if hasattr(module.processor, "attn_map"):
|
16 |
+
if name not in raw_attn_maps:
|
17 |
+
raw_attn_maps[name] = []
|
18 |
+
if name not in raw_ip_attn_maps:
|
19 |
+
raw_ip_attn_maps[name] = []
|
20 |
+
raw_attn_maps[name].append(module.processor.attn_map)
|
21 |
+
raw_ip_attn_maps[name].append(module.processor.ip_attn_map)
|
22 |
+
del module.processor.attn_map
|
23 |
+
del module.processor.ip_attn_map
|
24 |
+
|
25 |
+
return forward_hook
|
26 |
+
|
27 |
+
|
28 |
+
def post_process_attn_maps():
|
29 |
+
global raw_attn_maps, raw_ip_attn_maps, attn_maps, ip_attn_maps
|
30 |
+
attn_maps = [
|
31 |
+
dict(zip(raw_attn_maps.keys(), values))
|
32 |
+
for values in zip(*raw_attn_maps.values())
|
33 |
+
]
|
34 |
+
ip_attn_maps = [
|
35 |
+
dict(zip(raw_ip_attn_maps.keys(), values))
|
36 |
+
for values in zip(*raw_ip_attn_maps.values())
|
37 |
+
]
|
38 |
+
|
39 |
+
return attn_maps, ip_attn_maps
|
40 |
+
|
41 |
+
|
42 |
+
def register_cross_attention_hook(unet):
|
43 |
+
for name, module in unet.named_modules():
|
44 |
+
if name.split(".")[-1].startswith("attn2"):
|
45 |
+
module.register_forward_hook(hook_fn(name))
|
46 |
+
|
47 |
+
return unet
|
48 |
+
|
49 |
+
|
50 |
+
def upscale(attn_map, target_size):
|
51 |
+
attn_map = torch.mean(attn_map, dim=0)
|
52 |
+
attn_map = attn_map.permute(1, 0)
|
53 |
+
temp_size = None
|
54 |
+
|
55 |
+
for i in range(0, 5):
|
56 |
+
scale = 2**i
|
57 |
+
if (target_size[0] // scale) * (target_size[1] // scale) == attn_map.shape[
|
58 |
+
1
|
59 |
+
] * 64:
|
60 |
+
temp_size = (target_size[0] // (scale * 8), target_size[1] // (scale * 8))
|
61 |
+
break
|
62 |
+
|
63 |
+
assert temp_size is not None, "temp_size cannot is None"
|
64 |
+
|
65 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
66 |
+
|
67 |
+
attn_map = F.interpolate(
|
68 |
+
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
69 |
+
size=target_size,
|
70 |
+
mode="bilinear",
|
71 |
+
align_corners=False,
|
72 |
+
)[0]
|
73 |
+
|
74 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
75 |
+
return attn_map
|
76 |
+
|
77 |
+
|
78 |
+
def get_net_attn_map(
|
79 |
+
image_size, batch_size=2, instance_or_negative=False, detach=True, step=-1
|
80 |
+
):
|
81 |
+
|
82 |
+
idx = 0 if instance_or_negative else 1
|
83 |
+
net_attn_maps = []
|
84 |
+
net_ip_attn_maps = []
|
85 |
+
|
86 |
+
for _, attn_map in attn_maps[step].items():
|
87 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
88 |
+
attn_map = torch.chunk(attn_map, batch_size)[
|
89 |
+
idx
|
90 |
+
].squeeze() # get the attention map of text
|
91 |
+
attn_map = upscale(attn_map, image_size)
|
92 |
+
net_attn_maps.append(attn_map)
|
93 |
+
|
94 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps, dim=0), dim=0)
|
95 |
+
|
96 |
+
for _, attn_map in ip_attn_maps[step].items():
|
97 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
98 |
+
attn_map = torch.chunk(attn_map, batch_size)[
|
99 |
+
idx
|
100 |
+
].squeeze() # get the attention map of text
|
101 |
+
attn_map = upscale(attn_map, image_size)
|
102 |
+
net_ip_attn_maps.append(attn_map)
|
103 |
+
|
104 |
+
net_ip_attn_maps = torch.mean(torch.stack(net_ip_attn_maps, dim=0), dim=0)
|
105 |
+
|
106 |
+
return net_attn_maps, net_ip_attn_maps
|
107 |
+
|
108 |
+
|
109 |
+
def attnmaps2images(net_attn_maps):
|
110 |
+
images = []
|
111 |
+
|
112 |
+
for attn_map in net_attn_maps:
|
113 |
+
attn_map = attn_map.cpu().numpy()
|
114 |
+
normalized_attn_map = (
|
115 |
+
(attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
116 |
+
)
|
117 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
118 |
+
image = Image.fromarray(normalized_attn_map)
|
119 |
+
images.append(image)
|
120 |
+
|
121 |
+
return images
|
122 |
+
|
123 |
+
|
124 |
+
def is_torch2_available():
|
125 |
+
return hasattr(F, "scaled_dot_product_attention")
|
126 |
+
|
127 |
+
|
128 |
+
def get_generator(seed, device):
|
129 |
+
|
130 |
+
if seed is not None:
|
131 |
+
if isinstance(seed, list):
|
132 |
+
generator = [
|
133 |
+
torch.Generator(device).manual_seed(seed_item) for seed_item in seed
|
134 |
+
]
|
135 |
+
else:
|
136 |
+
generator = torch.Generator(device).manual_seed(seed)
|
137 |
+
else:
|
138 |
+
generator = None
|
139 |
+
|
140 |
+
return generator
|
omini_control/__init__.py
ADDED
File without changes
|
omini_control/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (153 Bytes). View file
|
|
omini_control/__pycache__/block.cpython-310.pyc
ADDED
Binary file (6.15 kB). View file
|
|
omini_control/__pycache__/concept_alignment.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
omini_control/__pycache__/conceptrol.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
omini_control/__pycache__/condition.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
omini_control/__pycache__/flux_conceptrol_pipeline.cpython-310.pyc
ADDED
Binary file (7.59 kB). View file
|
|
omini_control/__pycache__/lora_controller.cpython-310.pyc
ADDED
Binary file (3 kB). View file
|
|
omini_control/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
omini_control/block.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional, Dict, Any
|
3 |
+
from diffusers.models.attention_processor import Attention, F
|
4 |
+
from .lora_controller import enable_lora
|
5 |
+
from .conceptrol import Conceptrol
|
6 |
+
|
7 |
+
|
8 |
+
def attn_forward(
|
9 |
+
attn: Attention,
|
10 |
+
hidden_states: torch.FloatTensor,
|
11 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
12 |
+
condition_latents: torch.FloatTensor = None,
|
13 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
14 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
15 |
+
cond_rotary_emb: Optional[torch.Tensor] = None,
|
16 |
+
model_config: Optional[Dict[str, Any]] = {},
|
17 |
+
conceptrol: Conceptrol = None,
|
18 |
+
) -> torch.FloatTensor:
|
19 |
+
global attn_maps
|
20 |
+
batch_size, _, _ = (
|
21 |
+
hidden_states.shape
|
22 |
+
if encoder_hidden_states is None
|
23 |
+
else encoder_hidden_states.shape
|
24 |
+
)
|
25 |
+
|
26 |
+
with enable_lora(
|
27 |
+
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
|
28 |
+
):
|
29 |
+
# `sample` projections.
|
30 |
+
query = attn.to_q(hidden_states)
|
31 |
+
key = attn.to_k(hidden_states)
|
32 |
+
value = attn.to_v(hidden_states)
|
33 |
+
|
34 |
+
inner_dim = key.shape[-1]
|
35 |
+
head_dim = inner_dim // attn.heads
|
36 |
+
|
37 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
38 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
39 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
40 |
+
|
41 |
+
if attn.norm_q is not None:
|
42 |
+
query = attn.norm_q(query)
|
43 |
+
if attn.norm_k is not None:
|
44 |
+
key = attn.norm_k(key)
|
45 |
+
|
46 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
47 |
+
if encoder_hidden_states is not None:
|
48 |
+
# `context` projections.
|
49 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
50 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
51 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
52 |
+
|
53 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
54 |
+
batch_size, -1, attn.heads, head_dim
|
55 |
+
).transpose(1, 2)
|
56 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
57 |
+
batch_size, -1, attn.heads, head_dim
|
58 |
+
).transpose(1, 2)
|
59 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
60 |
+
batch_size, -1, attn.heads, head_dim
|
61 |
+
).transpose(1, 2)
|
62 |
+
|
63 |
+
if attn.norm_added_q is not None:
|
64 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
65 |
+
encoder_hidden_states_query_proj
|
66 |
+
)
|
67 |
+
if attn.norm_added_k is not None:
|
68 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
69 |
+
encoder_hidden_states_key_proj
|
70 |
+
)
|
71 |
+
|
72 |
+
# attention
|
73 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
74 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
75 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
76 |
+
|
77 |
+
if image_rotary_emb is not None:
|
78 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
79 |
+
|
80 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
81 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
82 |
+
|
83 |
+
if condition_latents is not None:
|
84 |
+
cond_query = attn.to_q(condition_latents)
|
85 |
+
cond_key = attn.to_k(condition_latents)
|
86 |
+
cond_value = attn.to_v(condition_latents)
|
87 |
+
|
88 |
+
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
|
89 |
+
1, 2
|
90 |
+
)
|
91 |
+
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
92 |
+
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
|
93 |
+
1, 2
|
94 |
+
)
|
95 |
+
if attn.norm_q is not None:
|
96 |
+
cond_query = attn.norm_q(cond_query)
|
97 |
+
if attn.norm_k is not None:
|
98 |
+
cond_key = attn.norm_k(cond_key)
|
99 |
+
|
100 |
+
if cond_rotary_emb is not None:
|
101 |
+
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
|
102 |
+
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
|
103 |
+
|
104 |
+
if condition_latents is not None:
|
105 |
+
query = torch.cat([query, cond_query], dim=2)
|
106 |
+
key = torch.cat([key, cond_key], dim=2)
|
107 |
+
value = torch.cat([value, cond_value], dim=2)
|
108 |
+
|
109 |
+
if not model_config.get("union_cond_attn", True):
|
110 |
+
# If we don't want to use the union condition attention, we need to mask the attention
|
111 |
+
# between the hidden states and the condition latents
|
112 |
+
attention_mask = torch.ones(
|
113 |
+
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
|
114 |
+
)
|
115 |
+
condition_n = cond_query.shape[2]
|
116 |
+
attention_mask[-condition_n:, :-condition_n] = False
|
117 |
+
attention_mask[:-condition_n, -condition_n:] = False
|
118 |
+
if hasattr(attn, "c_factor"):
|
119 |
+
attention_mask = torch.zeros(
|
120 |
+
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
|
121 |
+
)
|
122 |
+
condition_n = cond_query.shape[2]
|
123 |
+
bias = torch.log(attn.c_factor[0])
|
124 |
+
attention_mask[-condition_n:, :-condition_n] = bias
|
125 |
+
attention_mask[:-condition_n, -condition_n:] = bias
|
126 |
+
|
127 |
+
if conceptrol is None:
|
128 |
+
print(
|
129 |
+
"Conceptrol using this stuff indicates that the implementation is problematic"
|
130 |
+
)
|
131 |
+
hidden_states = F.scaled_dot_product_attention(
|
132 |
+
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
|
133 |
+
)
|
134 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
135 |
+
batch_size, -1, attn.heads * head_dim
|
136 |
+
)
|
137 |
+
hidden_states = hidden_states.to(query.dtype)
|
138 |
+
else:
|
139 |
+
conceptrolled_attention_probs = conceptrol(
|
140 |
+
query, key, attention_mask, c_factor=attn.c_factor
|
141 |
+
)
|
142 |
+
hidden_states = conceptrolled_attention_probs @ value
|
143 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
144 |
+
batch_size, -1, attn.heads * head_dim
|
145 |
+
)
|
146 |
+
hidden_states = hidden_states.to(query.dtype)
|
147 |
+
|
148 |
+
if encoder_hidden_states is not None:
|
149 |
+
if condition_latents is not None:
|
150 |
+
encoder_hidden_states, hidden_states, condition_latents = (
|
151 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
152 |
+
hidden_states[
|
153 |
+
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
|
154 |
+
],
|
155 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
encoder_hidden_states, hidden_states = (
|
159 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
160 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
161 |
+
)
|
162 |
+
|
163 |
+
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
|
164 |
+
# linear proj
|
165 |
+
hidden_states = attn.to_out[0](hidden_states)
|
166 |
+
# dropout
|
167 |
+
hidden_states = attn.to_out[1](hidden_states)
|
168 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
169 |
+
|
170 |
+
if condition_latents is not None:
|
171 |
+
condition_latents = attn.to_out[0](condition_latents)
|
172 |
+
condition_latents = attn.to_out[1](condition_latents)
|
173 |
+
|
174 |
+
return (
|
175 |
+
(hidden_states, encoder_hidden_states, condition_latents)
|
176 |
+
if condition_latents is not None
|
177 |
+
else (hidden_states, encoder_hidden_states)
|
178 |
+
)
|
179 |
+
elif condition_latents is not None:
|
180 |
+
# if there are condition_latents, we need to separate the hidden_states and the condition_latents
|
181 |
+
hidden_states, condition_latents = (
|
182 |
+
hidden_states[:, : -condition_latents.shape[1]],
|
183 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
184 |
+
)
|
185 |
+
return hidden_states, condition_latents
|
186 |
+
else:
|
187 |
+
return hidden_states
|
188 |
+
|
189 |
+
|
190 |
+
def block_forward(
|
191 |
+
self,
|
192 |
+
hidden_states: torch.FloatTensor,
|
193 |
+
encoder_hidden_states: torch.FloatTensor,
|
194 |
+
condition_latents: torch.FloatTensor,
|
195 |
+
temb: torch.FloatTensor,
|
196 |
+
cond_temb: torch.FloatTensor,
|
197 |
+
cond_rotary_emb=None,
|
198 |
+
image_rotary_emb=None,
|
199 |
+
model_config: Optional[Dict[str, Any]] = {},
|
200 |
+
conceptrol: Conceptrol = None,
|
201 |
+
):
|
202 |
+
use_cond = condition_latents is not None
|
203 |
+
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
|
204 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
205 |
+
hidden_states, emb=temb
|
206 |
+
)
|
207 |
+
|
208 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
209 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
210 |
+
)
|
211 |
+
|
212 |
+
if use_cond:
|
213 |
+
(
|
214 |
+
norm_condition_latents,
|
215 |
+
cond_gate_msa,
|
216 |
+
cond_shift_mlp,
|
217 |
+
cond_scale_mlp,
|
218 |
+
cond_gate_mlp,
|
219 |
+
) = self.norm1(condition_latents, emb=cond_temb)
|
220 |
+
|
221 |
+
# Attention.
|
222 |
+
result = attn_forward(
|
223 |
+
self.attn,
|
224 |
+
model_config=model_config,
|
225 |
+
hidden_states=norm_hidden_states,
|
226 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
227 |
+
condition_latents=norm_condition_latents if use_cond else None,
|
228 |
+
image_rotary_emb=image_rotary_emb,
|
229 |
+
cond_rotary_emb=cond_rotary_emb if use_cond else None,
|
230 |
+
conceptrol=conceptrol if use_cond else None,
|
231 |
+
)
|
232 |
+
attn_output, context_attn_output = result[:2]
|
233 |
+
cond_attn_output = result[2] if use_cond else None
|
234 |
+
|
235 |
+
# Process attention outputs for the `hidden_states`.
|
236 |
+
# 1. hidden_states
|
237 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
238 |
+
hidden_states = hidden_states + attn_output
|
239 |
+
# 2. encoder_hidden_states
|
240 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
241 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
242 |
+
# 3. condition_latents
|
243 |
+
if use_cond:
|
244 |
+
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
|
245 |
+
condition_latents = condition_latents + cond_attn_output
|
246 |
+
if model_config.get("add_cond_attn", False):
|
247 |
+
hidden_states += cond_attn_output
|
248 |
+
|
249 |
+
# LayerNorm + MLP.
|
250 |
+
# 1. hidden_states
|
251 |
+
norm_hidden_states = self.norm2(hidden_states)
|
252 |
+
norm_hidden_states = (
|
253 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
254 |
+
)
|
255 |
+
# 2. encoder_hidden_states
|
256 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
257 |
+
norm_encoder_hidden_states = (
|
258 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
259 |
+
)
|
260 |
+
# 3. condition_latents
|
261 |
+
if use_cond:
|
262 |
+
norm_condition_latents = self.norm2(condition_latents)
|
263 |
+
norm_condition_latents = (
|
264 |
+
norm_condition_latents * (1 + cond_scale_mlp[:, None])
|
265 |
+
+ cond_shift_mlp[:, None]
|
266 |
+
)
|
267 |
+
|
268 |
+
# Feed-forward.
|
269 |
+
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
|
270 |
+
# 1. hidden_states
|
271 |
+
ff_output = self.ff(norm_hidden_states)
|
272 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
273 |
+
# 2. encoder_hidden_states
|
274 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
275 |
+
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
|
276 |
+
# 3. condition_latents
|
277 |
+
if use_cond:
|
278 |
+
cond_ff_output = self.ff(norm_condition_latents)
|
279 |
+
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
|
280 |
+
|
281 |
+
# Process feed-forward outputs.
|
282 |
+
hidden_states = hidden_states + ff_output
|
283 |
+
encoder_hidden_states = encoder_hidden_states + context_ff_output
|
284 |
+
if use_cond:
|
285 |
+
condition_latents = condition_latents + cond_ff_output
|
286 |
+
|
287 |
+
# Clip to avoid overflow.
|
288 |
+
if encoder_hidden_states.dtype == torch.float16:
|
289 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
290 |
+
|
291 |
+
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
|
292 |
+
|
293 |
+
|
294 |
+
def single_block_forward(
|
295 |
+
self,
|
296 |
+
hidden_states: torch.FloatTensor,
|
297 |
+
temb: torch.FloatTensor,
|
298 |
+
image_rotary_emb=None,
|
299 |
+
condition_latents: torch.FloatTensor = None,
|
300 |
+
cond_temb: torch.FloatTensor = None,
|
301 |
+
cond_rotary_emb=None,
|
302 |
+
model_config: Optional[Dict[str, Any]] = {},
|
303 |
+
conceptrol: Conceptrol = None,
|
304 |
+
):
|
305 |
+
|
306 |
+
using_cond = condition_latents is not None
|
307 |
+
residual = hidden_states
|
308 |
+
with enable_lora(
|
309 |
+
(
|
310 |
+
self.norm.linear,
|
311 |
+
self.proj_mlp,
|
312 |
+
),
|
313 |
+
model_config.get("latent_lora", False),
|
314 |
+
):
|
315 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
316 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
317 |
+
if using_cond:
|
318 |
+
residual_cond = condition_latents
|
319 |
+
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
|
320 |
+
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
|
321 |
+
|
322 |
+
attn_output = attn_forward(
|
323 |
+
self.attn,
|
324 |
+
model_config=model_config,
|
325 |
+
hidden_states=norm_hidden_states,
|
326 |
+
image_rotary_emb=image_rotary_emb,
|
327 |
+
**(
|
328 |
+
{
|
329 |
+
"condition_latents": norm_condition_latents,
|
330 |
+
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
|
331 |
+
"conceptrol": conceptrol if using_cond else None,
|
332 |
+
}
|
333 |
+
if using_cond
|
334 |
+
else {}
|
335 |
+
),
|
336 |
+
)
|
337 |
+
if using_cond:
|
338 |
+
attn_output, cond_attn_output = attn_output
|
339 |
+
|
340 |
+
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
|
341 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
342 |
+
gate = gate.unsqueeze(1)
|
343 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
344 |
+
hidden_states = residual + hidden_states
|
345 |
+
if using_cond:
|
346 |
+
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
347 |
+
cond_gate = cond_gate.unsqueeze(1)
|
348 |
+
condition_latents = cond_gate * self.proj_out(condition_latents)
|
349 |
+
condition_latents = residual_cond + condition_latents
|
350 |
+
|
351 |
+
if hidden_states.dtype == torch.float16:
|
352 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
353 |
+
|
354 |
+
return hidden_states if not using_cond else (hidden_states, condition_latents)
|
omini_control/conceptrol.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class Conceptrol:
|
9 |
+
def __init__(self, config):
|
10 |
+
if "name" not in config:
|
11 |
+
raise KeyError("name has to be provided as 'conceptrol' or 'ominicontrol'")
|
12 |
+
|
13 |
+
name = config["name"]
|
14 |
+
if name not in ["conceptrol", "ominicontrol"]:
|
15 |
+
raise ValueError(
|
16 |
+
f"Name must be one of ['conceptrol', 'ominicontrol'], got {name}"
|
17 |
+
)
|
18 |
+
|
19 |
+
try:
|
20 |
+
log_attn_map = config["log_attn_map"]
|
21 |
+
except KeyError:
|
22 |
+
log_attn_map = False
|
23 |
+
|
24 |
+
# static
|
25 |
+
self.NUM_BLOCKS = 19 # this is fixed for FLUX
|
26 |
+
self.M = 512 # num of text tokens, fixed for FLUX
|
27 |
+
self.N = 1024 # num of latent / image condtion tokens, fixed for FLUX
|
28 |
+
self.EP = -10e6
|
29 |
+
self.CONCEPT_BLOCK_IDX = 18
|
30 |
+
|
31 |
+
# fixed during one generation
|
32 |
+
self.name = name
|
33 |
+
|
34 |
+
# variable during one generation
|
35 |
+
self.textual_concept_mask = None
|
36 |
+
self.forward_count = 0
|
37 |
+
|
38 |
+
# log out for visualization
|
39 |
+
if log_attn_map:
|
40 |
+
self.attn_maps = {"latent_to_concept": [], "latent_to_image": []}
|
41 |
+
|
42 |
+
def __call__(
|
43 |
+
self,
|
44 |
+
query: torch.FloatTensor,
|
45 |
+
key: torch.FloatTensor,
|
46 |
+
attention_mask: torch.Tensor,
|
47 |
+
c_factor: float = 1.0,
|
48 |
+
) -> torch.Tensor:
|
49 |
+
|
50 |
+
if not hasattr(self, "textual_concept_idx"):
|
51 |
+
raise AttributeError(
|
52 |
+
"textual_concept_idx must be registered before calling Conceptrol"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Skip computation for ominicontrol
|
56 |
+
if self.name == "ominicontrol":
|
57 |
+
scale_factor = 1 / math.sqrt(query.size(-1))
|
58 |
+
attention_weight = (
|
59 |
+
query @ key.transpose(-2, -1) * scale_factor + attention_mask
|
60 |
+
)
|
61 |
+
attention_probs = torch.softmax(
|
62 |
+
attention_weight, dim=-1
|
63 |
+
) # [B, H, M+2N, M+2N]
|
64 |
+
return attention_probs
|
65 |
+
|
66 |
+
if not self.textual_concept_idx[0] < self.textual_concept_idx[1]:
|
67 |
+
raise ValueError(
|
68 |
+
f"register_idx[0] must be less than register_idx[1], "
|
69 |
+
f"got {self.textual_concept_idx[0]} >= {self.textual_concept_idx[1]}"
|
70 |
+
)
|
71 |
+
|
72 |
+
### Reset attention mask predefined in ominicontrol
|
73 |
+
attention_mask = torch.zeros_like(attention_mask)
|
74 |
+
bias = torch.log(c_factor[0])
|
75 |
+
# attention of image condition to latent
|
76 |
+
attention_mask[-self.N :, self.M : -self.N] = bias
|
77 |
+
# attention of latent to image condition
|
78 |
+
attention_mask[self.M : -self.N, -self.N :] = bias
|
79 |
+
|
80 |
+
# attention of textual concept to image condition
|
81 |
+
attention_mask[
|
82 |
+
self.textual_concept_idx[0] : self.textual_concept_idx[1], -self.N :
|
83 |
+
] = bias
|
84 |
+
# attention of other words to image condition (set as negative inf)
|
85 |
+
attention_mask[: self.textual_concept_idx[0], -self.N :] = self.EP
|
86 |
+
attention_mask[self.textual_concept_idx[1] : self.M, -self.N :] = self.EP
|
87 |
+
|
88 |
+
# If there is no textual_concept_mask, it means currently in layers previous to the first concept-specific block
|
89 |
+
if self.textual_concept_mask is None:
|
90 |
+
self.textual_concept_mask = (
|
91 |
+
torch.zeros_like(attention_mask).unsqueeze(0).unsqueeze(0)
|
92 |
+
)
|
93 |
+
|
94 |
+
### Compute attention
|
95 |
+
scale_factor = 1 / math.sqrt(query.size(-1))
|
96 |
+
attention_weight = (
|
97 |
+
query @ key.transpose(-2, -1) * scale_factor
|
98 |
+
+ attention_mask
|
99 |
+
+ self.textual_concept_mask
|
100 |
+
)
|
101 |
+
# [B, H, M+2N, M+2N]
|
102 |
+
attention_probs = torch.softmax(attention_weight, dim=-1)
|
103 |
+
|
104 |
+
### Extract textual concept mask if it's concept-specific block
|
105 |
+
is_concept_block = (
|
106 |
+
self.forward_count % self.NUM_BLOCKS == self.CONCEPT_BLOCK_IDX
|
107 |
+
)
|
108 |
+
if is_concept_block:
|
109 |
+
# Shape: [B, H, N, S], where S is the token numbers of the subject
|
110 |
+
textual_concept_mask_local = attention_probs[
|
111 |
+
:,
|
112 |
+
:,
|
113 |
+
self.M : -self.N,
|
114 |
+
self.textual_concept_idx[0] : self.textual_concept_idx[1],
|
115 |
+
]
|
116 |
+
# Consider the ratio within context of text
|
117 |
+
textual_concept_mask_local = textual_concept_mask_local / torch.sum(
|
118 |
+
attention_probs[:, :, self.M : -self.N, : self.M], dim=-1, keepdim=True
|
119 |
+
)
|
120 |
+
# Average over words and head, Shape: [B, 1, N, 1]
|
121 |
+
textual_concept_mask_local = torch.mean(
|
122 |
+
textual_concept_mask_local, dim=(-1, 1), keepdim=True
|
123 |
+
)
|
124 |
+
# Normalize to average as 1
|
125 |
+
textual_concept_mask_local = textual_concept_mask_local / torch.mean(
|
126 |
+
textual_concept_mask_local, dim=-2, keepdim=True
|
127 |
+
)
|
128 |
+
|
129 |
+
self.textual_concept_mask = (
|
130 |
+
torch.zeros_like(attention_mask).unsqueeze(0).unsqueeze(0)
|
131 |
+
)
|
132 |
+
# log(A) in the paper
|
133 |
+
self.textual_concept_mask[:, :, self.M : -self.N, -self.N :] = torch.log(
|
134 |
+
textual_concept_mask_local
|
135 |
+
)
|
136 |
+
|
137 |
+
self.forward_count += 1
|
138 |
+
|
139 |
+
return attention_probs
|
140 |
+
|
141 |
+
def register(self, textual_concept_idx):
|
142 |
+
self.textual_concept_idx = textual_concept_idx
|
143 |
+
|
144 |
+
def visualize_attn_map(self, config_name: str, subject: str):
|
145 |
+
global global_concept_mask
|
146 |
+
global forward_count
|
147 |
+
|
148 |
+
save_dir = f"attn_maps/{config_name}/{subject}"
|
149 |
+
if not os.path.exists(save_dir):
|
150 |
+
os.makedirs(save_dir)
|
151 |
+
for attn_map_name, attn_maps in self.attn_maps.items():
|
152 |
+
if "token_to_token" in attn_map_name:
|
153 |
+
continue
|
154 |
+
plt.figure()
|
155 |
+
|
156 |
+
rows, cols = 8, 19
|
157 |
+
fig, axes = plt.subplots(
|
158 |
+
rows, cols, figsize=(64 * cols / 100, 64 * rows / 100)
|
159 |
+
)
|
160 |
+
fig.subplots_adjust(
|
161 |
+
wspace=0.1, hspace=0.1
|
162 |
+
) # Adjust spacing between subplots
|
163 |
+
|
164 |
+
# Plot each array in the list on the grid
|
165 |
+
for i, ax in enumerate(axes.flatten()):
|
166 |
+
if i < len(attn_maps): # Only plot existing arrays
|
167 |
+
attn_map = attn_maps[i] / np.amax(attn_maps[i])
|
168 |
+
ax.imshow(attn_map, cmap="viridis")
|
169 |
+
ax.axis("off") # Turn off axes for clarity
|
170 |
+
else:
|
171 |
+
ax.axis("off") # Turn off unused subplots
|
172 |
+
|
173 |
+
fig.set_size_inches(64 * cols / 100, 64 * rows / 100)
|
174 |
+
save_path = os.path.join(save_dir, f"{attn_map_name}.jpg")
|
175 |
+
plt.savefig(save_path)
|
176 |
+
plt.close()
|
177 |
+
|
178 |
+
for attn_map_name, attn_maps in self.attn_maps.items():
|
179 |
+
if "token_to_token" not in attn_map_name:
|
180 |
+
continue
|
181 |
+
plt.figure()
|
182 |
+
|
183 |
+
rows, cols = 8, 19
|
184 |
+
fig, axes = plt.subplots(
|
185 |
+
rows, cols, figsize=(2560 * cols / 100, 2560 * rows / 100)
|
186 |
+
)
|
187 |
+
fig.subplots_adjust(
|
188 |
+
wspace=0.1, hspace=0.1
|
189 |
+
) # Adjust spacing between subplots
|
190 |
+
|
191 |
+
# Plot each array in the list on the grid
|
192 |
+
for i, ax in enumerate(axes.flatten()):
|
193 |
+
if i < len(attn_maps): # Only plot existing arrays
|
194 |
+
attn_map = attn_maps[i] / np.amax(attn_maps[i])
|
195 |
+
ax.imshow(attn_map, cmap="viridis")
|
196 |
+
ax.axis("off") # Turn off axes for clarity
|
197 |
+
else:
|
198 |
+
ax.axis("off") # Turn off unused subplots
|
199 |
+
|
200 |
+
fig.set_size_inches(64 * cols / 100, 64 * rows / 100)
|
201 |
+
save_path = os.path.join(save_dir, f"{attn_map_name}.jpg")
|
202 |
+
plt.savefig(save_path)
|
203 |
+
plt.close()
|
204 |
+
|
205 |
+
for attn_map_name in self.attn_maps.keys():
|
206 |
+
self.attn_maps[attn_map_name] = []
|
207 |
+
global_concept_mask = None
|
208 |
+
forward_count = 0
|
omini_control/condition.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Union, Tuple
|
3 |
+
from diffusers.pipelines import FluxPipeline
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
condition_dict = {
|
9 |
+
"depth": 0,
|
10 |
+
"canny": 1,
|
11 |
+
"subject": 4,
|
12 |
+
"coloring": 6,
|
13 |
+
"deblurring": 7,
|
14 |
+
"fill": 9,
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
class Condition(object):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
condition_type: str,
|
22 |
+
raw_img: Union[Image.Image, torch.Tensor] = None,
|
23 |
+
condition: Union[Image.Image, torch.Tensor] = None,
|
24 |
+
mask=None,
|
25 |
+
) -> None:
|
26 |
+
self.condition_type = condition_type
|
27 |
+
assert raw_img is not None or condition is not None
|
28 |
+
if raw_img is not None:
|
29 |
+
self.condition = self.get_condition(condition_type, raw_img)
|
30 |
+
else:
|
31 |
+
self.condition = condition
|
32 |
+
# TODO: Add mask support
|
33 |
+
assert mask is None, "Mask not supported yet"
|
34 |
+
|
35 |
+
def get_condition(
|
36 |
+
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
37 |
+
) -> Union[Image.Image, torch.Tensor]:
|
38 |
+
"""
|
39 |
+
Returns the condition image.
|
40 |
+
"""
|
41 |
+
if condition_type == "depth":
|
42 |
+
from transformers import pipeline
|
43 |
+
|
44 |
+
depth_pipe = pipeline(
|
45 |
+
task="depth-estimation",
|
46 |
+
model="LiheYoung/depth-anything-small-hf",
|
47 |
+
device="cuda",
|
48 |
+
)
|
49 |
+
source_image = raw_img.convert("RGB")
|
50 |
+
condition_img = depth_pipe(source_image)["depth"].convert("RGB")
|
51 |
+
return condition_img
|
52 |
+
elif condition_type == "canny":
|
53 |
+
img = np.array(raw_img)
|
54 |
+
edges = cv2.Canny(img, 100, 200)
|
55 |
+
edges = Image.fromarray(edges).convert("RGB")
|
56 |
+
return edges
|
57 |
+
elif condition_type == "subject":
|
58 |
+
return raw_img
|
59 |
+
elif condition_type == "coloring":
|
60 |
+
return raw_img.convert("L").convert("RGB")
|
61 |
+
elif condition_type == "deblurring":
|
62 |
+
condition_image = (
|
63 |
+
raw_img.convert("RGB")
|
64 |
+
.filter(ImageFilter.GaussianBlur(10))
|
65 |
+
.convert("RGB")
|
66 |
+
)
|
67 |
+
return condition_image
|
68 |
+
elif condition_type == "fill":
|
69 |
+
return raw_img.convert("RGB")
|
70 |
+
return self.condition
|
71 |
+
|
72 |
+
@property
|
73 |
+
def type_id(self) -> int:
|
74 |
+
"""
|
75 |
+
Returns the type id of the condition.
|
76 |
+
"""
|
77 |
+
return condition_dict[self.condition_type]
|
78 |
+
|
79 |
+
@classmethod
|
80 |
+
def get_type_id(cls, condition_type: str) -> int:
|
81 |
+
"""
|
82 |
+
Returns the type id of the condition.
|
83 |
+
"""
|
84 |
+
return condition_dict[condition_type]
|
85 |
+
|
86 |
+
def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
|
87 |
+
"""
|
88 |
+
Encodes an image condition into tokens using the pipeline.
|
89 |
+
"""
|
90 |
+
cond_img = pipe.image_processor.preprocess(cond_img)
|
91 |
+
cond_img = cond_img.to(pipe.device).to(pipe.dtype)
|
92 |
+
cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
|
93 |
+
cond_img = (
|
94 |
+
cond_img - pipe.vae.config.shift_factor
|
95 |
+
) * pipe.vae.config.scaling_factor
|
96 |
+
cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
|
97 |
+
cond_ids = pipe._prepare_latent_image_ids(
|
98 |
+
cond_img.shape[0],
|
99 |
+
cond_img.shape[2],
|
100 |
+
cond_img.shape[3],
|
101 |
+
pipe.device,
|
102 |
+
pipe.dtype,
|
103 |
+
)
|
104 |
+
return cond_tokens, cond_ids
|
105 |
+
|
106 |
+
def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
107 |
+
"""
|
108 |
+
Encodes the condition into tokens, ids and type_id.
|
109 |
+
"""
|
110 |
+
if self.condition_type in [
|
111 |
+
"depth",
|
112 |
+
"canny",
|
113 |
+
"subject",
|
114 |
+
"coloring",
|
115 |
+
"deblurring",
|
116 |
+
"fill",
|
117 |
+
]:
|
118 |
+
tokens, ids = self._encode_image(pipe, self.condition)
|
119 |
+
else:
|
120 |
+
raise NotImplementedError(
|
121 |
+
f"Condition type {self.condition_type} not implemented"
|
122 |
+
)
|
123 |
+
type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
124 |
+
return tokens, ids, type_id
|
omini_control/flux_conceptrol_pipeline.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.pipelines import FluxPipeline
|
3 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
4 |
+
from .transformer import tranformer_forward
|
5 |
+
from .condition import Condition
|
6 |
+
from .conceptrol import Conceptrol
|
7 |
+
|
8 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
9 |
+
FluxPipelineOutput,
|
10 |
+
calculate_shift,
|
11 |
+
retrieve_timesteps,
|
12 |
+
np,
|
13 |
+
)
|
14 |
+
|
15 |
+
denoising_images = []
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_params(
|
19 |
+
prompt: Union[str, List[str]] = None,
|
20 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
21 |
+
height: Optional[int] = 512,
|
22 |
+
width: Optional[int] = 512,
|
23 |
+
num_inference_steps: int = 28,
|
24 |
+
timesteps: List[int] = None,
|
25 |
+
guidance_scale: float = 3.5,
|
26 |
+
num_images_per_prompt: Optional[int] = 1,
|
27 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
28 |
+
latents: Optional[torch.FloatTensor] = None,
|
29 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
30 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
31 |
+
output_type: Optional[str] = "pil",
|
32 |
+
return_dict: bool = True,
|
33 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
34 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
35 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
36 |
+
max_sequence_length: int = 512,
|
37 |
+
**kwargs: dict,
|
38 |
+
):
|
39 |
+
return (
|
40 |
+
prompt,
|
41 |
+
prompt_2,
|
42 |
+
height,
|
43 |
+
width,
|
44 |
+
num_inference_steps,
|
45 |
+
timesteps,
|
46 |
+
guidance_scale,
|
47 |
+
num_images_per_prompt,
|
48 |
+
generator,
|
49 |
+
latents,
|
50 |
+
prompt_embeds,
|
51 |
+
pooled_prompt_embeds,
|
52 |
+
output_type,
|
53 |
+
return_dict,
|
54 |
+
joint_attention_kwargs,
|
55 |
+
callback_on_step_end,
|
56 |
+
callback_on_step_end_tensor_inputs,
|
57 |
+
max_sequence_length,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def seed_everything(seed: int = 42):
|
62 |
+
torch.backends.cudnn.deterministic = True
|
63 |
+
torch.manual_seed(seed)
|
64 |
+
np.random.seed(seed)
|
65 |
+
|
66 |
+
|
67 |
+
def set_scale(pipe, condition_scale):
|
68 |
+
for name, module in pipe.transformer.named_modules():
|
69 |
+
if not name.endswith(".attn"):
|
70 |
+
continue
|
71 |
+
module.c_factor = torch.ones(1, 1) * condition_scale
|
72 |
+
|
73 |
+
|
74 |
+
class FluxConceptrolPipeline(FluxPipeline):
|
75 |
+
|
76 |
+
def find_subsequence(self, text, sub):
|
77 |
+
sub_len = len(sub)
|
78 |
+
for i in range(len(text) - sub_len + 1):
|
79 |
+
if text[i : i + sub_len] == sub:
|
80 |
+
return i, i + sub_len # Return start and end indices
|
81 |
+
return None
|
82 |
+
|
83 |
+
def locate_subject(self, prompt, subject, max_length=512):
|
84 |
+
text_inputs = self.tokenizer_2.tokenize(
|
85 |
+
prompt,
|
86 |
+
padding="max_length",
|
87 |
+
max_length=max_length,
|
88 |
+
truncation=True,
|
89 |
+
return_length=False,
|
90 |
+
return_overflowing_tokens=False,
|
91 |
+
return_tensors="pt",
|
92 |
+
)
|
93 |
+
subject_inputs = self.tokenizer_2.tokenize(
|
94 |
+
subject,
|
95 |
+
truncation=True,
|
96 |
+
return_length=False,
|
97 |
+
return_overflowing_tokens=False,
|
98 |
+
return_tensors="pt",
|
99 |
+
)
|
100 |
+
print("Text Inputs:", text_inputs)
|
101 |
+
print("Sbject Inputs:", subject_inputs)
|
102 |
+
print(self.find_subsequence(text_inputs, subject_inputs))
|
103 |
+
return self.find_subsequence(text_inputs, subject_inputs)
|
104 |
+
|
105 |
+
text_input_ids = text_inputs
|
106 |
+
return (
|
107 |
+
text_input_ids.index(subject_inputs[0]),
|
108 |
+
text_input_ids.index(subject_inputs[-1]) + 1,
|
109 |
+
)
|
110 |
+
|
111 |
+
def load_conceptrol(self, conceptrol):
|
112 |
+
self.conceptrol = conceptrol
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def __call__(
|
116 |
+
self,
|
117 |
+
image=None,
|
118 |
+
model_config: Optional[Dict[str, Any]] = {},
|
119 |
+
condition_scale: float = 1.0,
|
120 |
+
subject: Optional[str] = None,
|
121 |
+
control_guidance_start: float = 0.0,
|
122 |
+
control_guidance_end: float = 1.0,
|
123 |
+
conceptrol: Conceptrol = None,
|
124 |
+
seed: int = 42,
|
125 |
+
**params: dict,
|
126 |
+
):
|
127 |
+
seed_everything(seed)
|
128 |
+
|
129 |
+
if conceptrol is None:
|
130 |
+
if not hasattr(self, "conceptrol"):
|
131 |
+
raise ValueError("Default conceptrol not loaded. Please call load_conceptrol() first.")
|
132 |
+
conceptrol = self.conceptrol
|
133 |
+
|
134 |
+
conditions = [Condition("subject", image.convert("RGB").resize((512, 512)))]
|
135 |
+
if condition_scale != 1:
|
136 |
+
for name, module in self.transformer.named_modules():
|
137 |
+
if not name.endswith(".attn"):
|
138 |
+
continue
|
139 |
+
module.c_factor = torch.ones(1, 1) * condition_scale
|
140 |
+
|
141 |
+
(
|
142 |
+
prompt,
|
143 |
+
prompt_2,
|
144 |
+
height,
|
145 |
+
width,
|
146 |
+
num_inference_steps,
|
147 |
+
timesteps,
|
148 |
+
guidance_scale,
|
149 |
+
num_images_per_prompt,
|
150 |
+
generator,
|
151 |
+
latents,
|
152 |
+
prompt_embeds,
|
153 |
+
pooled_prompt_embeds,
|
154 |
+
output_type,
|
155 |
+
return_dict,
|
156 |
+
joint_attention_kwargs,
|
157 |
+
callback_on_step_end,
|
158 |
+
callback_on_step_end_tensor_inputs,
|
159 |
+
max_sequence_length,
|
160 |
+
) = prepare_params(**params)
|
161 |
+
|
162 |
+
if subject is not None:
|
163 |
+
textual_concept_idx = self.locate_subject(params["prompt"], subject)
|
164 |
+
else:
|
165 |
+
raise ValueError("Subject has to be provided")
|
166 |
+
|
167 |
+
if textual_concept_idx is None:
|
168 |
+
raise ValueError("Textual concept idx has to be provided")
|
169 |
+
|
170 |
+
conceptrol.register(textual_concept_idx)
|
171 |
+
|
172 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
173 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
174 |
+
|
175 |
+
# 1. Check inputs. Raise error if not correct
|
176 |
+
self.check_inputs(
|
177 |
+
prompt,
|
178 |
+
prompt_2,
|
179 |
+
height,
|
180 |
+
width,
|
181 |
+
prompt_embeds=prompt_embeds,
|
182 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
183 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
184 |
+
max_sequence_length=max_sequence_length,
|
185 |
+
)
|
186 |
+
|
187 |
+
self._guidance_scale = guidance_scale
|
188 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
189 |
+
self._interrupt = False
|
190 |
+
|
191 |
+
# 2. Define call parameters
|
192 |
+
if prompt is not None and isinstance(prompt, str):
|
193 |
+
batch_size = 1
|
194 |
+
elif prompt is not None and isinstance(prompt, list):
|
195 |
+
batch_size = len(prompt)
|
196 |
+
else:
|
197 |
+
batch_size = prompt_embeds.shape[0]
|
198 |
+
|
199 |
+
device = self._execution_device
|
200 |
+
|
201 |
+
lora_scale = (
|
202 |
+
self.joint_attention_kwargs.get("scale", None)
|
203 |
+
if self.joint_attention_kwargs is not None
|
204 |
+
else None
|
205 |
+
)
|
206 |
+
(
|
207 |
+
prompt_embeds,
|
208 |
+
pooled_prompt_embeds,
|
209 |
+
text_ids,
|
210 |
+
) = self.encode_prompt(
|
211 |
+
prompt=prompt,
|
212 |
+
prompt_2=prompt_2,
|
213 |
+
prompt_embeds=prompt_embeds,
|
214 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
215 |
+
device=device,
|
216 |
+
num_images_per_prompt=num_images_per_prompt,
|
217 |
+
max_sequence_length=max_sequence_length,
|
218 |
+
lora_scale=lora_scale,
|
219 |
+
)
|
220 |
+
|
221 |
+
# 4. Prepare latent variables
|
222 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
223 |
+
latents, latent_image_ids = self.prepare_latents(
|
224 |
+
batch_size * num_images_per_prompt,
|
225 |
+
num_channels_latents,
|
226 |
+
height,
|
227 |
+
width,
|
228 |
+
prompt_embeds.dtype,
|
229 |
+
device,
|
230 |
+
generator,
|
231 |
+
latents,
|
232 |
+
)
|
233 |
+
|
234 |
+
# 4.1. Prepare conditions
|
235 |
+
condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
|
236 |
+
use_condition = conditions is not None or []
|
237 |
+
if use_condition:
|
238 |
+
assert len(conditions) <= 1, "Only one condition is supported for now."
|
239 |
+
self.set_adapters(conditions[0].condition_type)
|
240 |
+
for condition in conditions:
|
241 |
+
tokens, ids, type_id = condition.encode(self)
|
242 |
+
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
243 |
+
condition_ids.append(ids) # [token_n, id_dim(3)]
|
244 |
+
condition_type_ids.append(type_id) # [token_n, 1]
|
245 |
+
condition_latents = torch.cat(condition_latents, dim=1)
|
246 |
+
condition_ids = torch.cat(condition_ids, dim=0)
|
247 |
+
if condition.condition_type == "subject":
|
248 |
+
condition_ids[:, 2] += width // 16
|
249 |
+
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
250 |
+
|
251 |
+
# 5. Prepare timesteps
|
252 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
253 |
+
image_seq_len = latents.shape[1]
|
254 |
+
mu = calculate_shift(
|
255 |
+
image_seq_len,
|
256 |
+
self.scheduler.config.base_image_seq_len,
|
257 |
+
self.scheduler.config.max_image_seq_len,
|
258 |
+
self.scheduler.config.base_shift,
|
259 |
+
self.scheduler.config.max_shift,
|
260 |
+
)
|
261 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
262 |
+
self.scheduler,
|
263 |
+
num_inference_steps,
|
264 |
+
device,
|
265 |
+
timesteps,
|
266 |
+
sigmas,
|
267 |
+
mu=mu,
|
268 |
+
)
|
269 |
+
num_warmup_steps = max(
|
270 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
271 |
+
)
|
272 |
+
self._num_timesteps = len(timesteps)
|
273 |
+
|
274 |
+
# 6. Denoising loop
|
275 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
276 |
+
for i, t in enumerate(timesteps):
|
277 |
+
if (i / len(timesteps) < control_guidance_start) or (
|
278 |
+
(i + 1) / len(timesteps) > control_guidance_end
|
279 |
+
):
|
280 |
+
set_scale(self, 0.5) # Warmup required for the first few steps
|
281 |
+
else:
|
282 |
+
set_scale(self, condition_scale)
|
283 |
+
if self.interrupt:
|
284 |
+
continue
|
285 |
+
|
286 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
287 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
288 |
+
|
289 |
+
# handle guidance
|
290 |
+
if self.transformer.config.guidance_embeds:
|
291 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
292 |
+
guidance = guidance.expand(latents.shape[0])
|
293 |
+
else:
|
294 |
+
guidance = None
|
295 |
+
noise_pred = tranformer_forward(
|
296 |
+
self.transformer,
|
297 |
+
model_config=model_config,
|
298 |
+
conceptrol=conceptrol,
|
299 |
+
# Inputs of the condition (new feature)
|
300 |
+
condition_latents=condition_latents if use_condition else None,
|
301 |
+
condition_ids=condition_ids if use_condition else None,
|
302 |
+
condition_type_ids=condition_type_ids if use_condition else None,
|
303 |
+
# Inputs to the original transformer
|
304 |
+
hidden_states=latents,
|
305 |
+
timestep=timestep / 1000,
|
306 |
+
guidance=guidance,
|
307 |
+
pooled_projections=pooled_prompt_embeds,
|
308 |
+
encoder_hidden_states=prompt_embeds,
|
309 |
+
txt_ids=text_ids,
|
310 |
+
img_ids=latent_image_ids,
|
311 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
312 |
+
return_dict=False,
|
313 |
+
)[0]
|
314 |
+
|
315 |
+
# compute the previous noisy sample x_t -> x_t-1
|
316 |
+
latents_dtype = latents.dtype
|
317 |
+
latents = self.scheduler.step(
|
318 |
+
noise_pred, t, latents, return_dict=False
|
319 |
+
)[0]
|
320 |
+
|
321 |
+
if latents.dtype != latents_dtype:
|
322 |
+
if torch.backends.mps.is_available():
|
323 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
324 |
+
latents = latents.to(latents_dtype)
|
325 |
+
|
326 |
+
if callback_on_step_end is not None:
|
327 |
+
callback_kwargs = {}
|
328 |
+
for k in callback_on_step_end_tensor_inputs:
|
329 |
+
callback_kwargs[k] = locals()[k]
|
330 |
+
callback_outputs = callback_on_step_end(
|
331 |
+
self, latents, callback_kwargs
|
332 |
+
)
|
333 |
+
|
334 |
+
global denoising_images
|
335 |
+
denoising_images.append(callback_outputs)
|
336 |
+
|
337 |
+
# call the callback, if provided
|
338 |
+
if i == len(timesteps) - 1 or (
|
339 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
340 |
+
):
|
341 |
+
progress_bar.update()
|
342 |
+
|
343 |
+
if output_type == "latent":
|
344 |
+
image = latents
|
345 |
+
|
346 |
+
else:
|
347 |
+
latents = self._unpack_latents(
|
348 |
+
latents, height, width, self.vae_scale_factor
|
349 |
+
)
|
350 |
+
latents = (
|
351 |
+
latents / self.vae.config.scaling_factor
|
352 |
+
) + self.vae.config.shift_factor
|
353 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
354 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
355 |
+
|
356 |
+
# Offload all models
|
357 |
+
self.maybe_free_model_hooks()
|
358 |
+
|
359 |
+
if condition_scale != 1:
|
360 |
+
for name, module in self.transformer.named_modules():
|
361 |
+
if not name.endswith(".attn"):
|
362 |
+
continue
|
363 |
+
del module.c_factor
|
364 |
+
|
365 |
+
if not return_dict:
|
366 |
+
return (image,)
|
367 |
+
|
368 |
+
return FluxPipelineOutput(images=image)
|
omini_control/lora_controller.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
2 |
+
from typing import List, Any, Optional, Type
|
3 |
+
|
4 |
+
|
5 |
+
class enable_lora:
|
6 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], activated: bool) -> None:
|
7 |
+
self.activated: bool = activated
|
8 |
+
if activated:
|
9 |
+
return
|
10 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
11 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
12 |
+
]
|
13 |
+
self.scales = [
|
14 |
+
{
|
15 |
+
active_adapter: lora_module.scaling[active_adapter]
|
16 |
+
for active_adapter in lora_module.active_adapters
|
17 |
+
}
|
18 |
+
for lora_module in self.lora_modules
|
19 |
+
]
|
20 |
+
|
21 |
+
def __enter__(self) -> None:
|
22 |
+
if self.activated:
|
23 |
+
return
|
24 |
+
|
25 |
+
for lora_module in self.lora_modules:
|
26 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
27 |
+
continue
|
28 |
+
lora_module.scale_layer(0)
|
29 |
+
|
30 |
+
def __exit__(
|
31 |
+
self,
|
32 |
+
exc_type: Optional[Type[BaseException]],
|
33 |
+
exc_val: Optional[BaseException],
|
34 |
+
exc_tb: Optional[Any],
|
35 |
+
) -> None:
|
36 |
+
if self.activated:
|
37 |
+
return
|
38 |
+
for i, lora_module in enumerate(self.lora_modules):
|
39 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
40 |
+
continue
|
41 |
+
for active_adapter in lora_module.active_adapters:
|
42 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
43 |
+
|
44 |
+
|
45 |
+
class set_lora_scale:
|
46 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None:
|
47 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
48 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
49 |
+
]
|
50 |
+
self.scales = [
|
51 |
+
{
|
52 |
+
active_adapter: lora_module.scaling[active_adapter]
|
53 |
+
for active_adapter in lora_module.active_adapters
|
54 |
+
}
|
55 |
+
for lora_module in self.lora_modules
|
56 |
+
]
|
57 |
+
self.scale = scale
|
58 |
+
|
59 |
+
def __enter__(self) -> None:
|
60 |
+
for lora_module in self.lora_modules:
|
61 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
62 |
+
continue
|
63 |
+
lora_module.scale_layer(self.scale)
|
64 |
+
|
65 |
+
def __exit__(
|
66 |
+
self,
|
67 |
+
exc_type: Optional[Type[BaseException]],
|
68 |
+
exc_val: Optional[BaseException],
|
69 |
+
exc_tb: Optional[Any],
|
70 |
+
) -> None:
|
71 |
+
for i, lora_module in enumerate(self.lora_modules):
|
72 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
73 |
+
continue
|
74 |
+
for active_adapter in lora_module.active_adapters:
|
75 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
omini_control/transformer.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional, Dict, Any
|
3 |
+
from .block import block_forward, single_block_forward
|
4 |
+
from .lora_controller import enable_lora
|
5 |
+
from .conceptrol import Conceptrol
|
6 |
+
from diffusers.models.transformers.transformer_flux import (
|
7 |
+
FluxTransformer2DModel,
|
8 |
+
Transformer2DModelOutput,
|
9 |
+
USE_PEFT_BACKEND,
|
10 |
+
is_torch_version,
|
11 |
+
scale_lora_layers,
|
12 |
+
unscale_lora_layers,
|
13 |
+
logger,
|
14 |
+
)
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_params(
|
19 |
+
hidden_states: torch.Tensor,
|
20 |
+
encoder_hidden_states: torch.Tensor = None,
|
21 |
+
pooled_projections: torch.Tensor = None,
|
22 |
+
timestep: torch.LongTensor = None,
|
23 |
+
img_ids: torch.Tensor = None,
|
24 |
+
txt_ids: torch.Tensor = None,
|
25 |
+
guidance: torch.Tensor = None,
|
26 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
27 |
+
controlnet_block_samples=None,
|
28 |
+
controlnet_single_block_samples=None,
|
29 |
+
return_dict: bool = True,
|
30 |
+
**kwargs: dict,
|
31 |
+
):
|
32 |
+
return (
|
33 |
+
hidden_states,
|
34 |
+
encoder_hidden_states,
|
35 |
+
pooled_projections,
|
36 |
+
timestep,
|
37 |
+
img_ids,
|
38 |
+
txt_ids,
|
39 |
+
guidance,
|
40 |
+
joint_attention_kwargs,
|
41 |
+
controlnet_block_samples,
|
42 |
+
controlnet_single_block_samples,
|
43 |
+
return_dict,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def tranformer_forward(
|
48 |
+
transformer: FluxTransformer2DModel,
|
49 |
+
condition_latents: torch.Tensor,
|
50 |
+
condition_ids: torch.Tensor,
|
51 |
+
condition_type_ids: torch.Tensor,
|
52 |
+
model_config: Optional[Dict[str, Any]] = {},
|
53 |
+
return_conditional_latents: bool = False,
|
54 |
+
c_t=0,
|
55 |
+
conceptrol: Conceptrol = None,
|
56 |
+
**params: dict,
|
57 |
+
):
|
58 |
+
self = transformer
|
59 |
+
use_condition = condition_latents is not None
|
60 |
+
use_condition_in_single_blocks = model_config.get(
|
61 |
+
"use_condition_in_single_blocks", True
|
62 |
+
)
|
63 |
+
# if return_conditional_latents is True, use_condition and use_condition_in_single_blocks must be True
|
64 |
+
assert not return_conditional_latents or (
|
65 |
+
use_condition and use_condition_in_single_blocks
|
66 |
+
), "`return_conditional_latents` is True, `use_condition` and `use_condition_in_single_blocks` must be True"
|
67 |
+
|
68 |
+
(
|
69 |
+
hidden_states,
|
70 |
+
encoder_hidden_states,
|
71 |
+
pooled_projections,
|
72 |
+
timestep,
|
73 |
+
img_ids,
|
74 |
+
txt_ids,
|
75 |
+
guidance,
|
76 |
+
joint_attention_kwargs,
|
77 |
+
controlnet_block_samples,
|
78 |
+
controlnet_single_block_samples,
|
79 |
+
return_dict,
|
80 |
+
) = prepare_params(**params)
|
81 |
+
|
82 |
+
if joint_attention_kwargs is not None:
|
83 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
84 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
85 |
+
else:
|
86 |
+
lora_scale = 1.0
|
87 |
+
|
88 |
+
if USE_PEFT_BACKEND:
|
89 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
90 |
+
scale_lora_layers(self, lora_scale)
|
91 |
+
else:
|
92 |
+
if (
|
93 |
+
joint_attention_kwargs is not None
|
94 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
95 |
+
):
|
96 |
+
logger.warning(
|
97 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
98 |
+
)
|
99 |
+
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)):
|
100 |
+
hidden_states = self.x_embedder(hidden_states)
|
101 |
+
condition_latents = self.x_embedder(condition_latents) if use_condition else None
|
102 |
+
|
103 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
104 |
+
if guidance is not None:
|
105 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
106 |
+
else:
|
107 |
+
guidance = None
|
108 |
+
temb = (
|
109 |
+
self.time_text_embed(timestep, pooled_projections)
|
110 |
+
if guidance is None
|
111 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
112 |
+
)
|
113 |
+
cond_temb = (
|
114 |
+
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
115 |
+
if guidance is None
|
116 |
+
else self.time_text_embed(
|
117 |
+
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
|
118 |
+
)
|
119 |
+
)
|
120 |
+
if hasattr(self, "cond_type_embed") and condition_type_ids is not None:
|
121 |
+
cond_type_proj = self.time_text_embed.time_proj(condition_type_ids[0])
|
122 |
+
cond_type_emb = self.cond_type_embed(cond_type_proj.to(dtype=cond_temb.dtype))
|
123 |
+
cond_temb = cond_temb + cond_type_emb
|
124 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
125 |
+
|
126 |
+
if txt_ids.ndim == 3:
|
127 |
+
logger.warning(
|
128 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
129 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
130 |
+
)
|
131 |
+
txt_ids = txt_ids[0]
|
132 |
+
if img_ids.ndim == 3:
|
133 |
+
logger.warning(
|
134 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
135 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
136 |
+
)
|
137 |
+
img_ids = img_ids[0]
|
138 |
+
|
139 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
140 |
+
image_rotary_emb = self.pos_embed(ids)
|
141 |
+
if use_condition:
|
142 |
+
cond_ids = condition_ids
|
143 |
+
cond_rotary_emb = self.pos_embed(cond_ids)
|
144 |
+
|
145 |
+
# hidden_states = torch.cat([hidden_states, condition_latents], dim=1)
|
146 |
+
|
147 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
148 |
+
if self.training and self.gradient_checkpointing:
|
149 |
+
|
150 |
+
def create_custom_forward(module, return_dict=None):
|
151 |
+
def custom_forward(*inputs):
|
152 |
+
if return_dict is not None:
|
153 |
+
return module(*inputs, return_dict=return_dict)
|
154 |
+
else:
|
155 |
+
return module(*inputs)
|
156 |
+
|
157 |
+
return custom_forward
|
158 |
+
|
159 |
+
ckpt_kwargs: Dict[str, Any] = (
|
160 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
161 |
+
)
|
162 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
163 |
+
create_custom_forward(block),
|
164 |
+
hidden_states,
|
165 |
+
encoder_hidden_states,
|
166 |
+
temb,
|
167 |
+
image_rotary_emb,
|
168 |
+
**ckpt_kwargs,
|
169 |
+
)
|
170 |
+
|
171 |
+
else:
|
172 |
+
encoder_hidden_states, hidden_states, condition_latents = block_forward(
|
173 |
+
block,
|
174 |
+
model_config=model_config,
|
175 |
+
hidden_states=hidden_states,
|
176 |
+
encoder_hidden_states=encoder_hidden_states,
|
177 |
+
condition_latents=condition_latents if use_condition else None,
|
178 |
+
temb=temb,
|
179 |
+
cond_temb=cond_temb if use_condition else None,
|
180 |
+
cond_rotary_emb=cond_rotary_emb if use_condition else None,
|
181 |
+
image_rotary_emb=image_rotary_emb,
|
182 |
+
conceptrol=conceptrol,
|
183 |
+
)
|
184 |
+
|
185 |
+
# controlnet residual
|
186 |
+
if controlnet_block_samples is not None:
|
187 |
+
interval_control = len(self.transformer_blocks) / len(
|
188 |
+
controlnet_block_samples
|
189 |
+
)
|
190 |
+
interval_control = int(np.ceil(interval_control))
|
191 |
+
hidden_states = (
|
192 |
+
hidden_states
|
193 |
+
+ controlnet_block_samples[index_block // interval_control]
|
194 |
+
)
|
195 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
196 |
+
|
197 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
198 |
+
if self.training and self.gradient_checkpointing:
|
199 |
+
|
200 |
+
def create_custom_forward(module, return_dict=None):
|
201 |
+
def custom_forward(*inputs):
|
202 |
+
if return_dict is not None:
|
203 |
+
return module(*inputs, return_dict=return_dict)
|
204 |
+
else:
|
205 |
+
return module(*inputs)
|
206 |
+
|
207 |
+
return custom_forward
|
208 |
+
|
209 |
+
ckpt_kwargs: Dict[str, Any] = (
|
210 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
211 |
+
)
|
212 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
213 |
+
create_custom_forward(block),
|
214 |
+
hidden_states,
|
215 |
+
temb,
|
216 |
+
image_rotary_emb,
|
217 |
+
**ckpt_kwargs,
|
218 |
+
)
|
219 |
+
|
220 |
+
else:
|
221 |
+
result = single_block_forward(
|
222 |
+
block,
|
223 |
+
model_config=model_config,
|
224 |
+
hidden_states=hidden_states,
|
225 |
+
temb=temb,
|
226 |
+
image_rotary_emb=image_rotary_emb,
|
227 |
+
**(
|
228 |
+
{
|
229 |
+
"condition_latents": condition_latents,
|
230 |
+
"cond_temb": cond_temb,
|
231 |
+
"cond_rotary_emb": cond_rotary_emb,
|
232 |
+
"conceptrol": conceptrol,
|
233 |
+
}
|
234 |
+
if use_condition_in_single_blocks and use_condition
|
235 |
+
else {}
|
236 |
+
),
|
237 |
+
)
|
238 |
+
if use_condition_in_single_blocks and use_condition:
|
239 |
+
hidden_states, condition_latents = result
|
240 |
+
else:
|
241 |
+
hidden_states = result
|
242 |
+
|
243 |
+
# controlnet residual
|
244 |
+
if controlnet_single_block_samples is not None:
|
245 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
246 |
+
controlnet_single_block_samples
|
247 |
+
)
|
248 |
+
interval_control = int(np.ceil(interval_control))
|
249 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
250 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
251 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
252 |
+
)
|
253 |
+
|
254 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
255 |
+
|
256 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
257 |
+
output = self.proj_out(hidden_states)
|
258 |
+
if return_conditional_latents:
|
259 |
+
condition_latents = (
|
260 |
+
self.norm_out(condition_latents, cond_temb) if use_condition else None
|
261 |
+
)
|
262 |
+
condition_output = self.proj_out(condition_latents) if use_condition else None
|
263 |
+
|
264 |
+
if USE_PEFT_BACKEND:
|
265 |
+
# remove `lora_scale` from each PEFT layer
|
266 |
+
unscale_lora_layers(self, lora_scale)
|
267 |
+
|
268 |
+
if not return_dict:
|
269 |
+
return (
|
270 |
+
(output,) if not return_conditional_latents else (output, condition_output)
|
271 |
+
)
|
272 |
+
|
273 |
+
return Transformer2DModelOutput(sample=output)
|
requirements.txt
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
-
torch
|
5 |
transformers
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
transformers
|
2 |
+
diffusers
|
3 |
+
peft
|
4 |
+
opencv-python
|
5 |
+
protobuf
|
6 |
+
sentencepiece
|
7 |
+
gradio
|
8 |
+
jupyter
|
9 |
+
torchao
|
style.css
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
justify-content: center;
|
4 |
+
}
|
5 |
+
|
6 |
+
[role="tabpanel"] {
|
7 |
+
border: 0
|
8 |
+
}
|
9 |
+
|
10 |
+
#duplicate-button {
|
11 |
+
margin: auto;
|
12 |
+
color: #fff;
|
13 |
+
background: #1565c0;
|
14 |
+
border-radius: 100vh;
|
15 |
+
}
|
16 |
+
|
17 |
+
.gradio-container {
|
18 |
+
max-width: 690px ! important;
|
19 |
+
}
|
20 |
+
|
21 |
+
.equal-height {
|
22 |
+
display: flex;
|
23 |
+
flex: 1;
|
24 |
+
}
|
25 |
+
|
26 |
+
.grid-container {
|
27 |
+
display: grid;
|
28 |
+
grid-template-columns: 1fr 1fr; /* 两列宽度相等 */
|
29 |
+
gap: 20px;
|
30 |
+
height: 100%; /* 确保容器高度为100% */
|
31 |
+
}
|
32 |
+
|
33 |
+
.grid-item {
|
34 |
+
display: flex;
|
35 |
+
flex-direction: column;
|
36 |
+
height: 100%;
|
37 |
+
}
|
38 |
+
|
39 |
+
.flex-grow {
|
40 |
+
flex-grow: 1; /* 使该元素占据剩余的高度 */
|
41 |
+
display: flex;
|
42 |
+
flex-direction: column;
|
43 |
+
}
|
44 |
+
|
45 |
+
#share-btn-container {
|
46 |
+
padding-left: 0.5rem !important;
|
47 |
+
padding-right: 0.5rem !important;
|
48 |
+
background-color: #000000;
|
49 |
+
justify-content: center;
|
50 |
+
align-items: center;
|
51 |
+
border-radius: 9999px !important;
|
52 |
+
max-width: 13rem;
|
53 |
+
margin-left: auto;
|
54 |
+
margin-top: 0.35em;
|
55 |
+
}
|
56 |
+
|
57 |
+
div#share-btn-container>div {
|
58 |
+
flex-direction: row;
|
59 |
+
background: black;
|
60 |
+
align-items: center
|
61 |
+
}
|
62 |
+
|
63 |
+
#share-btn-container:hover {
|
64 |
+
background-color: #060606
|
65 |
+
}
|
66 |
+
|
67 |
+
#share-btn {
|
68 |
+
all: initial;
|
69 |
+
color: #ffffff;
|
70 |
+
font-weight: 600;
|
71 |
+
cursor: pointer;
|
72 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
73 |
+
margin-left: 0.5rem !important;
|
74 |
+
padding-top: 0.5rem !important;
|
75 |
+
padding-bottom: 0.5rem !important;
|
76 |
+
right: 0;
|
77 |
+
font-size: 15px;
|
78 |
+
}
|
79 |
+
|
80 |
+
#share-btn * {
|
81 |
+
all: unset
|
82 |
+
}
|
83 |
+
|
84 |
+
#share-btn-container div:nth-child(-n+2) {
|
85 |
+
width: auto !important;
|
86 |
+
min-height: 0px !important;
|
87 |
+
}
|
88 |
+
|
89 |
+
#share-btn-container .wrap {
|
90 |
+
display: none !important
|
91 |
+
}
|
92 |
+
|
93 |
+
#share-btn-container.hidden {
|
94 |
+
display: none !important
|
95 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from lpips import LPIPS
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Normalize
|
10 |
+
|
11 |
+
|
12 |
+
def show_images_horizontally(
|
13 |
+
list_of_files: np.array, output_file: Optional[str] = None, interact: bool = False
|
14 |
+
) -> None:
|
15 |
+
"""
|
16 |
+
Visualize the list of images horizontally and save the figure as PNG.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
list_of_files: The list of images as numpy array with shape (N, H, W, C).
|
20 |
+
output_file: The output file path to save the figure as PNG.
|
21 |
+
interact: Whether to show the figure interactively in Jupyter Notebook or not in Python.
|
22 |
+
"""
|
23 |
+
number_of_files = len(list_of_files)
|
24 |
+
|
25 |
+
heights = [a[0].shape[0] for a in list_of_files]
|
26 |
+
widths = [a.shape[1] for a in list_of_files[0]]
|
27 |
+
|
28 |
+
fig_width = 8.0 # inches
|
29 |
+
fig_height = fig_width * sum(heights) / sum(widths)
|
30 |
+
|
31 |
+
# Create a figure with subplots
|
32 |
+
_, axs = plt.subplots(
|
33 |
+
1, number_of_files, figsize=(fig_width * number_of_files, fig_height)
|
34 |
+
)
|
35 |
+
plt.tight_layout()
|
36 |
+
for i in range(number_of_files):
|
37 |
+
_image = list_of_files[i]
|
38 |
+
axs[i].imshow(_image)
|
39 |
+
axs[i].axis("off")
|
40 |
+
|
41 |
+
# Save the figure as PNG
|
42 |
+
if interact:
|
43 |
+
plt.show()
|
44 |
+
else:
|
45 |
+
plt.savefig(output_file, bbox_inches="tight", pad_inches=0.25)
|
46 |
+
|
47 |
+
|
48 |
+
def image_grids(images, rows=None, cols=None):
|
49 |
+
if not images:
|
50 |
+
raise ValueError("The image list is empty.")
|
51 |
+
|
52 |
+
n_images = len(images)
|
53 |
+
if cols is None:
|
54 |
+
cols = int(n_images**0.5)
|
55 |
+
if rows is None:
|
56 |
+
rows = (n_images + cols - 1) // cols
|
57 |
+
|
58 |
+
width, height = images[0].size
|
59 |
+
grid_width = cols * width
|
60 |
+
grid_height = rows * height
|
61 |
+
|
62 |
+
grid_image = Image.new("RGB", (grid_width, grid_height))
|
63 |
+
|
64 |
+
for i, image in enumerate(images):
|
65 |
+
row, col = divmod(i, cols)
|
66 |
+
grid_image.paste(image, (col * width, row * height))
|
67 |
+
|
68 |
+
return grid_image
|
69 |
+
|
70 |
+
|
71 |
+
def save_image(image: np.array, file_name: str) -> None:
|
72 |
+
"""
|
73 |
+
Save the image as JPG.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
image: The input image as numpy array with shape (H, W, C).
|
77 |
+
file_name: The file name to save the image.
|
78 |
+
"""
|
79 |
+
image = Image.fromarray(image)
|
80 |
+
image.save(file_name)
|
81 |
+
|
82 |
+
|
83 |
+
def load_and_process_images(load_dir: str) -> np.array:
|
84 |
+
"""
|
85 |
+
Load and process the images into numpy array from the directory.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
load_dir: The directory to load the images.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
images: The images as numpy array with shape (N, H, W, C).
|
92 |
+
"""
|
93 |
+
images = []
|
94 |
+
print(load_dir)
|
95 |
+
filenames = sorted(
|
96 |
+
os.listdir(load_dir), key=lambda x: int(x.split(".")[0])
|
97 |
+
) # Ensure the files are sorted numerically
|
98 |
+
for filename in filenames:
|
99 |
+
if filename.endswith(".jpg"):
|
100 |
+
img = Image.open(os.path.join(load_dir, filename))
|
101 |
+
img_array = (
|
102 |
+
np.asarray(img) / 255.0
|
103 |
+
) # Convert to numpy array and scale pixel values to [0, 1]
|
104 |
+
images.append(img_array)
|
105 |
+
return images
|
106 |
+
|
107 |
+
|
108 |
+
def compute_lpips(images: np.array, lpips_model: LPIPS) -> np.array:
|
109 |
+
"""
|
110 |
+
Compute the LPIPS of the input images.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
images: The input images as numpy array with shape (N, H, W, C).
|
114 |
+
lpips_model: The LPIPS model used to compute perceptual distances.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
distances: The LPIPS of the input images.
|
118 |
+
"""
|
119 |
+
# Get device of lpips_model
|
120 |
+
device = next(lpips_model.parameters()).device
|
121 |
+
device = str(device)
|
122 |
+
|
123 |
+
# Change the input images into tensor
|
124 |
+
images = torch.tensor(images).to(device).float()
|
125 |
+
images = torch.permute(images, (0, 3, 1, 2))
|
126 |
+
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
127 |
+
images = normalize(images)
|
128 |
+
|
129 |
+
# Compute the LPIPS between each adjacent input images
|
130 |
+
distances = []
|
131 |
+
for i in range(images.shape[0]):
|
132 |
+
if i == images.shape[0] - 1:
|
133 |
+
break
|
134 |
+
img1 = images[i].unsqueeze(0)
|
135 |
+
img2 = images[i + 1].unsqueeze(0)
|
136 |
+
loss = lpips_model(img1, img2)
|
137 |
+
distances.append(loss.item())
|
138 |
+
distances = np.array(distances)
|
139 |
+
return distances
|
140 |
+
|
141 |
+
|
142 |
+
def compute_gini(distances: np.array) -> float:
|
143 |
+
"""
|
144 |
+
Compute the Gini index of the input distances.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
distances: The input distances as numpy array.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
gini: The Gini index of the input distances.
|
151 |
+
"""
|
152 |
+
if len(distances) < 2:
|
153 |
+
return 0.0 # Gini index is 0 for less than two elements
|
154 |
+
|
155 |
+
# Sort the list of distances
|
156 |
+
sorted_distances = sorted(distances)
|
157 |
+
n = len(sorted_distances)
|
158 |
+
mean_distance = sum(sorted_distances) / n
|
159 |
+
|
160 |
+
# Compute the sum of absolute differences
|
161 |
+
sum_of_differences = 0
|
162 |
+
for di in sorted_distances:
|
163 |
+
for dj in sorted_distances:
|
164 |
+
sum_of_differences += abs(di - dj)
|
165 |
+
|
166 |
+
# Normalize the sum of differences by the mean and the number of elements
|
167 |
+
gini = sum_of_differences / (2 * n * n * mean_distance)
|
168 |
+
return gini
|
169 |
+
|
170 |
+
|
171 |
+
def compute_smoothness_and_consistency(images: np.array, lpips_model: LPIPS) -> tuple:
|
172 |
+
"""
|
173 |
+
Compute the smoothness and efficiency of the input images.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
images: The input images as numpy array with shape (N, H, W, C).
|
177 |
+
lpips_model: The LPIPS model used to compute perceptual distances.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
smoothness: One minus gini index of LPIPS of consecutive images.
|
181 |
+
consistency: The mean LPIPS of consecutive images.
|
182 |
+
max_inception_distance: The maximum LPIPS of consecutive images.
|
183 |
+
"""
|
184 |
+
distances = compute_lpips(images, lpips_model)
|
185 |
+
smoothness = 1 - compute_gini(distances)
|
186 |
+
consistency = np.mean(distances)
|
187 |
+
max_inception_distance = np.max(distances)
|
188 |
+
return smoothness, consistency, max_inception_distance
|
189 |
+
|
190 |
+
|
191 |
+
def separate_source_and_interpolated_images(images: np.array) -> tuple:
|
192 |
+
"""
|
193 |
+
Separate the input images into source and interpolated images.
|
194 |
+
The input source is the start and end of the images, while the interpolated images are the rest.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
images: The input images as numpy array with shape (N, H, W, C).
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
source: The source images as numpy array with shape (2, H, W, C).
|
201 |
+
interpolation: The interpolated images as numpy array with shape (N-2, H, W, C).
|
202 |
+
"""
|
203 |
+
# Check if the array has at least two elements
|
204 |
+
if len(images) < 2:
|
205 |
+
raise ValueError("The input array should have at least two elements.")
|
206 |
+
|
207 |
+
# Separate the array into two parts
|
208 |
+
# First part takes the first and last element
|
209 |
+
source = np.array([images[0], images[-1]])
|
210 |
+
# Second part takes the rest of the elements
|
211 |
+
interpolation = images[1:-1]
|
212 |
+
return source, interpolation
|