qyoo commited on
Commit
7ee615c
·
1 Parent(s): 0badb7b

add debug msg

Browse files
app.py CHANGED
@@ -209,6 +209,7 @@ def generate(
209
  image=image,
210
  subject=subject,
211
  num_inference_steps=num_inference_steps,
 
212
  condition_scale=condition_scale,
213
  control_guidance_start=control_guidance_start,
214
  height=512,
 
209
  image=image,
210
  subject=subject,
211
  num_inference_steps=num_inference_steps,
212
+ guidance_scale=guidance_scale,
213
  condition_scale=condition_scale,
214
  control_guidance_start=control_guidance_start,
215
  height=512,
omini_control/flux_conceptrol_pipeline.py CHANGED
@@ -97,9 +97,7 @@ class FluxConceptrolPipeline(FluxPipeline):
97
  return_overflowing_tokens=False,
98
  return_tensors="pt",
99
  )
100
- print("Text Inputs:", text_inputs)
101
- print("Sbject Inputs:", subject_inputs)
102
- print(self.find_subsequence(text_inputs, subject_inputs))
103
  return self.find_subsequence(text_inputs, subject_inputs)
104
 
105
  text_input_ids = text_inputs
@@ -196,6 +194,8 @@ class FluxConceptrolPipeline(FluxPipeline):
196
  else:
197
  batch_size = prompt_embeds.shape[0]
198
 
 
 
199
  device = self._execution_device
200
 
201
  lora_scale = (
@@ -292,6 +292,9 @@ class FluxConceptrolPipeline(FluxPipeline):
292
  guidance = guidance.expand(latents.shape[0])
293
  else:
294
  guidance = None
 
 
 
295
  noise_pred = tranformer_forward(
296
  self.transformer,
297
  model_config=model_config,
 
97
  return_overflowing_tokens=False,
98
  return_tensors="pt",
99
  )
100
+ print(f"Locate {subject}", self.find_subsequence(text_inputs, subject_inputs))
 
 
101
  return self.find_subsequence(text_inputs, subject_inputs)
102
 
103
  text_input_ids = text_inputs
 
194
  else:
195
  batch_size = prompt_embeds.shape[0]
196
 
197
+ print(batch_size)
198
+
199
  device = self._execution_device
200
 
201
  lora_scale = (
 
292
  guidance = guidance.expand(latents.shape[0])
293
  else:
294
  guidance = None
295
+ print("condition_latents.shape:", condition_latents.shape)
296
+ print("latent.shape:", latents.shape)
297
+ print("prompt_embeds.shape", prompt_embeds.shape)
298
  noise_pred = tranformer_forward(
299
  self.transformer,
300
  model_config=model_config,