r1208 commited on
Commit
0406849
ยท
verified ยท
1 Parent(s): 9342df5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -34
app.py CHANGED
@@ -4,35 +4,6 @@ from transformers import pipeline
4
  from PIL import Image
5
  import os
6
 
7
- st.title("LLM Translate for ko->eng")
8
-
9
- # adding the text that will show in the text box as default
10
-
11
- text_default = """
12
- ๊ทธ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํœ˜๋ชฐ์•„์น˜๋Š” ๋ง‰๋Œ€ํ•œ ๋งˆ๋‚˜. ํ—ˆ๊ณต์—์„œ ํ”ผ์–ด์˜ค๋ฅธ ๋‹ค์„ฏ ๊ฐœ์˜๋ถˆ๊ฝ‚์ด ํฌ๊ธฐ๋ฅผ ๋ถ€ํ’€๋ฆฌ๊ณ , ์ด๋‚ด ํฌํƒ„์ฒ˜๋Ÿผ ์˜์•„์กŒ๋‹ค.
13
-
14
- ํ›„์šฐ์šฐ์šฐ์›…, ๊นŒ์•™!
15
-
16
- ์ˆ˜๋งŒ์˜ ๋ชฌ์Šคํ„ฐ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒ€์€ ํŒŒ๋„๊ฐ€ ๊ฐˆ๋ผ์กŒ๋‹ค. ์ดˆ๊ณ ์˜จ์˜ ์—ด๊ธฐ๊ฐ€ ์‚ด๊ณผ ๋ผˆ๋ฅผ ํƒœ์šฐ๊ณ  ์ง€๋ฉด์„ ๋…น์˜€๋‹ค."""
17
-
18
- hf_token = os.getenv("HF_ACCESS_TOKEN")
19
-
20
- from peft import AutoPeftModelForCausalLM
21
- from transformers import AutoTokenizer
22
- import torch
23
-
24
- # attn_implementation = None
25
- # USE_FLASH_ATTENTION = False
26
- # if USE_FLASH_ATTENTION:
27
- # attn_implementation="flash_attention_2"
28
-
29
-
30
- model_id = "r1208/c4ai-command-r-v01-4bit_32r"
31
-
32
- model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, use_auth_token=hf_token)
33
- tokenizer = AutoTokenizer.from_pretrained(model_id, token = access_token, use_auth_token=hf_token)
34
-
35
- tokenizer_with_prefix_space = AutoTokenizer.from_pretrained(model_id, add_prefix_space=True, use_auth_token=hf_token)
36
 
37
  def get_tokens_as_list(word_list):
38
  "Converts a sequence of words into a list of tokens"
@@ -41,12 +12,7 @@ def get_tokens_as_list(word_list):
41
  tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
42
  tokens_list.append(tokenized_word)
43
  return tokens_list
44
- bad_words_ids = get_tokens_as_list( word_list=["\n", "\n\n", "\ ", " \ ", "\\", "'\n'"] )
45
 
46
- max_new_tokens = st.sidebar.slider("Max Length", value=100, min_value=10, max_value=1000)
47
- temperature = st.sidebar.slider("Temperature", value=0.3, min_value=0.0, max_value=1.0, step=0.05)
48
- top_k = st.sidebar.slider("Top-k", min_value=0, max_value=50, value=0)
49
- top_p = st.sidebar.slider("Top-p", min_value=0.75, max_value=1.0, step=0.05, value=0.9)
50
 
51
  def translate(text):
52
  # Prepare the prompt
@@ -64,6 +30,48 @@ def translate(text):
64
  return translation
65
 
66
  def main():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  st.subheader("Enter text to translate")
68
  input_text = st.text_area("", height=300)
69
 
 
4
  from PIL import Image
5
  import os
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def get_tokens_as_list(word_list):
9
  "Converts a sequence of words into a list of tokens"
 
12
  tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
13
  tokens_list.append(tokenized_word)
14
  return tokens_list
 
15
 
 
 
 
 
16
 
17
  def translate(text):
18
  # Prepare the prompt
 
30
  return translation
31
 
32
  def main():
33
+
34
+ st.title("LLM Translate for ko->eng")
35
+
36
+ # adding the text that will show in the text box as default
37
+
38
+ text_default = """
39
+ ๊ทธ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํœ˜๋ชฐ์•„์น˜๋Š” ๋ง‰๋Œ€ํ•œ ๋งˆ๋‚˜. ํ—ˆ๊ณต์—์„œ ํ”ผ์–ด์˜ค๋ฅธ ๋‹ค์„ฏ ๊ฐœ์˜๋ถˆ๊ฝ‚์ด ํฌ๊ธฐ๋ฅผ ๋ถ€ํ’€๋ฆฌ๊ณ , ์ด๋‚ด ํฌํƒ„์ฒ˜๋Ÿผ ์˜์•„์กŒ๋‹ค.
40
+
41
+ ํ›„์šฐ์šฐ์šฐ์›…, ๊นŒ์•™!
42
+
43
+ ์ˆ˜๋งŒ์˜ ๋ชฌ์Šคํ„ฐ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒ€์€ ํŒŒ๋„๊ฐ€ ๊ฐˆ๋ผ์กŒ๋‹ค. ์ดˆ๊ณ ์˜จ์˜ ์—ด๊ธฐ๊ฐ€ ์‚ด๊ณผ ๋ผˆ๋ฅผ ํƒœ์šฐ๊ณ  ์ง€๋ฉด์„ ๋…น์˜€๋‹ค."""
44
+
45
+ hf_token = os.getenv("HF_ACCESS_TOKEN")
46
+
47
+ from peft import AutoPeftModelForCausalLM
48
+ from transformers import AutoTokenizer
49
+ import torch
50
+
51
+ # attn_implementation = None
52
+ # USE_FLASH_ATTENTION = False
53
+ # if USE_FLASH_ATTENTION:
54
+ # attn_implementation="flash_attention_2"
55
+
56
+
57
+ model_id = "r1208/c4ai-command-r-v01-4bit_32r"
58
+
59
+ model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, use_auth_token=hf_token)
60
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token = access_token, use_auth_token=hf_token)
61
+
62
+ tokenizer_with_prefix_space = AutoTokenizer.from_pretrained(model_id, add_prefix_space=True, use_auth_token=hf_token)
63
+
64
+
65
+
66
+
67
+ bad_words_ids = get_tokens_as_list( word_list=["\n", "\n\n", "\ ", " \ ", "\\", "'\n'"] )
68
+
69
+ max_new_tokens = st.sidebar.slider("Max Length", value=100, min_value=10, max_value=1000)
70
+ temperature = st.sidebar.slider("Temperature", value=0.3, min_value=0.0, max_value=1.0, step=0.05)
71
+ top_k = st.sidebar.slider("Top-k", min_value=0, max_value=50, value=0)
72
+ top_p = st.sidebar.slider("Top-p", min_value=0.75, max_value=1.0, step=0.05, value=0.9)
73
+
74
+
75
  st.subheader("Enter text to translate")
76
  input_text = st.text_area("", height=300)
77