Spaces:
Runtime error
Runtime error
File size: 8,086 Bytes
a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e 057f5e7 a9c396e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.llms import LlamaCpp
from huggingface_hub import hf_hub_download
import param
import os
import torch
from langchain.document_loaders import (
EverNoteLoader,
TextLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
PyPDFLoader,
)
#YOUR_HF_TOKEN = os.getenv("My_hf_token")
llm_api=HuggingFaceHub(
huggingfacehub_api_token=os.getenv("My_hf_token"),
repo_id="tiiuae/falcon-7b-instruct",
model_kwargs={
"temperature":0.2,
"max_new_tokens":500,
"top_k":50,
"top_p":0.95,
"repetition_penalty":1.2,
},), #ChatOpenAI(model_name=llm_name, temperature=0)
#alter
def load_db(files):
EXTENSIONS = {
".txt": (TextLoader, {"encoding": "utf8"}),
".pdf": (PyPDFLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
}
# select extensions loader
documents = []
for file in files:
ext = "." + file.rsplit(".", 1)[-1]
if ext in EXTENSIONS:
loader_class, loader_args = EXTENSIONS[ext]
loader = loader_class(file, **loader_args)
documents.extend(loader.load())
else:
pass
# load documents
if documents == []:
loader_class, loader_args = EXTENSIONS['.txt']
loader = loader_class('demo_docs/demo.txt', **loader_args)
documents = loader.load()
# split documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
docs = text_splitter.split_documents(documents)
# define embedding
embeddings = HuggingFaceEmbeddings(model_name='all-MiniLM-L6-v2') # all-mpnet-base-v2 #embeddings = OpenAIEmbeddings()
# create vector database from data
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
return db
def q_a(db, chain_type="stuff", k=3, llm=None):
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
# create a chatbot chain. Memory is managed externally.
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type=chain_type,
retriever=retriever,
return_source_documents=True,
return_generated_question=True,
)
return qa
class DocChat(param.Parameterized):
chat_history = param.List([])
answer = param.String("")
db_query = param.String("")
db_response = param.List([])
llm = llm_api[0]
k_value = param.Integer(3)
def __init__(self, **params):
super(DocChat, self).__init__( **params)
self.loaded_file = "demo_docs/demo.txt"
self.db = load_db(self.loaded_file)
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
def call_load_db(self, path_file, k):
if not os.path.exists(path_file[0]): # init or no file specified
return "No file loaded"
else:
try:
self.db = load_db(path_file)
self.loaded_file = path_file
self.qa = q_a(self.db, "stuff", k, self.llm)
self.k_value = k
#self.clr_history()
return f"New DB created and history cleared | Loaded File: {self.loaded_file}"
except:
return f'No valid file'
# chat
def convchain(self, query, k_max, recall_previous_messages):
if k_max != self.k_value:
print("Maximum querys changed")
self.qa = q_a(self.db, "stuff", k_max, self.llm)
self.k_value = k_max
if not recall_previous_messages:
self.clr_history()
try:
result = self.qa({"question": query, "chat_history": self.chat_history})
except:
self.default_falcon_model()
self.qa = q_a(self.db, "stuff", k_max, self.llm)
result = self.qa({"question": query, "chat_history": self.chat_history})
self.chat_history.extend([(query, result["answer"])])
self.db_query = result["generated_question"]
self.db_response = result["source_documents"]
self.answer = result['answer']
return self.answer
def change_llm(self, repo_, file_, max_tokens=16, temperature=0.2, top_p=0.95, top_k=50, repeat_penalty=1.2, k=3):
if torch.cuda.is_available():
try:
model_path = hf_hub_download(repo_id=repo_, filename=file_)
self.llm = LlamaCpp(
model_path=model_path,
n_ctx=1000,
n_batch=512,
n_gpu_layers=35,
max_tokens=max_tokens,
verbose=False,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
self.qa = q_a(self.db, "stuff", k, self.llm)
self.k_value = k
return f"Loaded {file_} [GPU INFERENCE]"
except:
return "No valid model"
else:
try:
model_path = hf_hub_download(repo_id=repo_, filename=file_)
self.llm = LlamaCpp(
model_path=model_path,
n_ctx=1000,
n_batch=8,
max_tokens=max_tokens,
verbose=False,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
self.qa = q_a(self.db, "stuff", k, self.llm)
self.k_value = k
return f"Loaded {file_} [CPU INFERENCE SLOW]"
except:
return "No valid model"
def default_falcon_model(self):
self.llm = llm_api[0]
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
return "Loaded model Falcon 7B-instruct [API FAST INFERENCE]"
def openai_model(self, API_KEY):
self.llm = ChatOpenAI(temperature=0, openai_api_key=API_KEY, model_name='gpt-3.5-turbo')
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
API_KEY = ""
return "Loaded model OpenAI gpt-3.5-turbo [API FAST INFERENCE] | If there is no response from the API, Falcon 7B-instruct will be used."
@param.depends('db_query ', )
def get_lquest(self):
if not self.db_query :
return print("Last question to DB: no DB accesses so far")
return self.db_query
@param.depends('db_response', )
def get_sources(self):
if not self.db_response:
return
#rlist=[f"Result of DB lookup:"]
rlist=[]
for doc in self.db_response:
for element in doc:
rlist.append(element)
return rlist
@param.depends('convchain', 'clr_history')
def get_chats(self):
if not self.chat_history:
return "No History Yet"
#rlist=[f"Current Chat History variable"]
rlist=[]
for exchange in self.chat_history:
rlist.append(exchange)
return rlist
def clr_history(self,count=0):
self.chat_history = []
return "HISTORY CLEARED"
|