File size: 8,086 Bytes
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
 
 
a9c396e
 
 
 
 
 
 
 
 
 
 
 
057f5e7
a9c396e
 
 
 
 
 
 
 
 
 
 
 
057f5e7
 
 
a9c396e
 
 
 
 
 
057f5e7
a9c396e
057f5e7
 
 
 
a9c396e
 
057f5e7
a9c396e
 
057f5e7
a9c396e
057f5e7
 
a9c396e
 
057f5e7
 
 
 
 
 
 
 
 
 
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
a9c396e
057f5e7
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
a9c396e
057f5e7
a9c396e
 
 
 
 
057f5e7
 
 
 
 
 
 
 
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.chains import RetrievalQA,  ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.llms import LlamaCpp
from huggingface_hub import hf_hub_download
import param
import os
import torch
from langchain.document_loaders import (
    EverNoteLoader,
    TextLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
    PyPDFLoader,
)

#YOUR_HF_TOKEN = os.getenv("My_hf_token")
llm_api=HuggingFaceHub(
    huggingfacehub_api_token=os.getenv("My_hf_token"),
    repo_id="tiiuae/falcon-7b-instruct",
    model_kwargs={
        "temperature":0.2,
        "max_new_tokens":500,
        "top_k":50,
        "top_p":0.95,
        "repetition_penalty":1.2,
        },), #ChatOpenAI(model_name=llm_name, temperature=0)


#alter
def load_db(files):
    EXTENSIONS = {
        ".txt": (TextLoader, {"encoding": "utf8"}),
        ".pdf": (PyPDFLoader, {}),
        ".doc": (UnstructuredWordDocumentLoader, {}),
        ".docx": (UnstructuredWordDocumentLoader, {}),
        ".enex": (EverNoteLoader, {}),
        ".epub": (UnstructuredEPubLoader, {}),
        ".html": (UnstructuredHTMLLoader, {}),
        ".md": (UnstructuredMarkdownLoader, {}),
        ".odt": (UnstructuredODTLoader, {}),
        ".ppt": (UnstructuredPowerPointLoader, {}),
        ".pptx": (UnstructuredPowerPointLoader, {}),
    }



    # select extensions loader
    documents = []
    for file in files:
      ext = "." + file.rsplit(".", 1)[-1]
      if ext in EXTENSIONS:
          loader_class, loader_args = EXTENSIONS[ext]
          loader = loader_class(file, **loader_args)
          documents.extend(loader.load())
      else:
        pass

    # load documents
    if documents == []:
        loader_class, loader_args = EXTENSIONS['.txt']
        loader = loader_class('demo_docs/demo.txt', **loader_args)
        documents = loader.load()

    # split documents
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
    docs = text_splitter.split_documents(documents)

    # define embedding
    embeddings = HuggingFaceEmbeddings(model_name='all-MiniLM-L6-v2') # all-mpnet-base-v2 #embeddings = OpenAIEmbeddings()

    # create vector database from data
    db = DocArrayInMemorySearch.from_documents(docs, embeddings)
    return db

def q_a(db, chain_type="stuff", k=3, llm=None):
    retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
    # create a chatbot chain. Memory is managed externally.
    qa = ConversationalRetrievalChain.from_llm(
        llm=llm,
        chain_type=chain_type,
        retriever=retriever,
        return_source_documents=True,
        return_generated_question=True,
    )
    return qa



class DocChat(param.Parameterized):
    chat_history = param.List([])
    answer = param.String("")
    db_query  = param.String("")
    db_response = param.List([])
    llm = llm_api[0]
    k_value = param.Integer(3)


    def __init__(self,  **params):
        super(DocChat, self).__init__( **params)
        self.loaded_file = "demo_docs/demo.txt"
        self.db = load_db(self.loaded_file)
        self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
        

    def call_load_db(self, path_file, k):
        if not os.path.exists(path_file[0]):  # init or no file specified
            return "No file loaded"
        else:
          try:
            self.db = load_db(path_file)
            self.loaded_file = path_file
            self.qa = q_a(self.db, "stuff", k, self.llm)
            self.k_value = k
            #self.clr_history()
            return f"New DB created and history cleared | Loaded File: {self.loaded_file}"
          except:
            return f'No valid file'


    # chat
    def convchain(self, query, k_max, recall_previous_messages):
        if k_max != self.k_value:
          print("Maximum querys changed")
          self.qa = q_a(self.db, "stuff", k_max, self.llm)
          self.k_value = k_max

        if not recall_previous_messages:
          self.clr_history()

        try:
          result = self.qa({"question": query, "chat_history": self.chat_history})
        except:
          self.default_falcon_model()
          self.qa = q_a(self.db, "stuff", k_max, self.llm)
          result = self.qa({"question": query, "chat_history": self.chat_history})
        
        self.chat_history.extend([(query, result["answer"])])
        self.db_query = result["generated_question"]
        self.db_response = result["source_documents"]
        self.answer = result['answer']
        return self.answer

    def change_llm(self, repo_, file_, max_tokens=16, temperature=0.2, top_p=0.95, top_k=50, repeat_penalty=1.2, k=3):

        if torch.cuda.is_available():
            try:
              model_path = hf_hub_download(repo_id=repo_, filename=file_)

              self.llm = LlamaCpp(
                  model_path=model_path,
                  n_ctx=1000,
                  n_batch=512,
                  n_gpu_layers=35,
                  max_tokens=max_tokens,
                  verbose=False,
                  temperature=temperature,
                  top_p=top_p,
                  top_k=top_k,
                  repeat_penalty=repeat_penalty,
                  )
              self.qa = q_a(self.db, "stuff", k, self.llm)
              self.k_value = k
              return f"Loaded {file_} [GPU INFERENCE]"
            except:
              return "No valid model"
        else:
            try:
              model_path = hf_hub_download(repo_id=repo_, filename=file_)

              self.llm = LlamaCpp(
                  model_path=model_path,
                  n_ctx=1000,
                  n_batch=8,
                  max_tokens=max_tokens,
                  verbose=False,
                  temperature=temperature,
                  top_p=top_p,
                  top_k=top_k,
                  repeat_penalty=repeat_penalty,
                  )
              self.qa = q_a(self.db, "stuff", k, self.llm)
              self.k_value = k
              return f"Loaded {file_} [CPU INFERENCE SLOW]"
            except:
              return "No valid model"

    def default_falcon_model(self):
      self.llm = llm_api[0]
      self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
      return "Loaded model Falcon 7B-instruct [API FAST INFERENCE]"

    def openai_model(self, API_KEY):
        self.llm = ChatOpenAI(temperature=0, openai_api_key=API_KEY, model_name='gpt-3.5-turbo')
        self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
        API_KEY = ""
        return "Loaded model OpenAI gpt-3.5-turbo [API FAST INFERENCE] | If there is no response from the API, Falcon 7B-instruct will be used."

    @param.depends('db_query ', )
    def get_lquest(self):
        if not self.db_query :
            return print("Last question to DB: no DB accesses so far")
        return self.db_query

    @param.depends('db_response', )
    def get_sources(self):
        if not self.db_response:
            return
        #rlist=[f"Result of DB lookup:"]
        rlist=[]
        for doc in self.db_response:
          for element in doc:
            rlist.append(element)
        return rlist

    @param.depends('convchain', 'clr_history')
    def get_chats(self):
        if not self.chat_history:
            return "No History Yet"
        #rlist=[f"Current Chat History variable"]
        rlist=[]
        for exchange in self.chat_history:
            rlist.append(exchange)
        return rlist

    def clr_history(self,count=0):
        self.chat_history = []
        return "HISTORY CLEARED"