Spaces:
Runtime error
Runtime error
File size: 4,977 Bytes
a9c396e a263964 a9c396e a263964 a9c396e a263964 a9c396e ae5dbd6 a9c396e ae5dbd6 a9c396e 61c3f19 a263964 61c3f19 a263964 a9c396e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.llms import LlamaCpp
from huggingface_hub import hf_hub_download
from langchain.document_loaders import (
EverNoteLoader,
TextLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
PyPDFLoader,
)
import param
import os
import torch
from conversadocs.bones import DocChat
dc = DocChat()
##### GRADIO CONFIG ####
if torch.cuda.is_available():
print("CUDA is available on this system.")
os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir --verbose')
else:
print("CUDA is not available on this system.")
os.system('pip install llama-cpp-python')
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with Documents π - Falcon, Llama-2</h1>
<p style="text-align: center;">Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt, pttx; click the "Click to Upload Files" button, <br />
Wait for the Status to show Loaded documents, start typing your questions. <br />
The app is set to store chat-history</p>
</div>
"""
theme='aliabid94/new-theme'
def flag():
return "PROCESSING..."
def upload_file(files, max_docs):
file_paths = [file.name for file in files]
return dc.call_load_db(file_paths, max_docs)
def predict(message, chat_history, max_k):
print(message)
bot_message = dc.convchain(message, max_k)
print(bot_message)
return "", dc.get_chats()
def convert():
docs = dc.get_sources()
data_docs = ""
for i in range(0,len(docs),2):
txt = docs[i][1].replace("\n","<br>")
sc = "Archive: " + docs[i+1][1]["source"]
try:
pg = "Page: " + str(docs[i+1][1]["page"])
except:
pg = "Document Data"
data_docs += f"<hr><h3 style='color:red;'>{pg}</h2><p>{txt}</p><p>{sc}</p>"
return data_docs
# Max values in generation
DOC_DB_LIMIT = 10
MAX_NEW_TOKENS = 2048
with gr.Blocks(theme=theme, css=css) as demo:
with gr.Tab("Chat"):
with gr.Column(elem_id="col-container"):
gr.HTML(title)
upload_button = gr.UploadButton("Click to Upload Files", file_types=["pdf"], file_count="multiple")
file_output = gr.HTML()
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
with gr.Column():
sou = gr.HTML("")
with gr.Tab("Chat Options"):
max_docs = gr.inputs.Slider(1, DOC_DB_LIMIT, default=3, label="Maximum querys to the DB.", step=1)
row_table = gr.HTML("<hr><h4> </h2>")
clear_button = gr.Button("CLEAR CHAT HISTORY", )
link_output = gr.HTML("")
clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
upload_button.upload(flag,[],[file_output]).then(upload_file, [upload_button, max_docs], file_output)
with gr.Tab("Change model"):
gr.HTML("<h3>Only models from the GGML library are accepted.</h3>")
repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML")
file_ = gr.Textbox(label="File name" ,value="llama-2-7b-chat.ggmlv3.q2_K.bin")
max_tokens = gr.inputs.Slider(1, MAX_NEW_TOKENS, default=16, label="Max new tokens", step=1)
temperature = gr.inputs.Slider(0.1, 1., default=0.2, label="Temperature", step=0.1)
top_k = gr.inputs.Slider(0.01, 1., default=0.95, label="Top K", step=0.01)
top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1)
repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1)
change_model_button = gr.Button("Load GGML Model")
model_verify = gr.HTML("Loaded model Falcon 7B-instruct")
default_model = gr.HTML("<hr><h4>Default Model</h2>")
falcon_button = gr.Button("Load FALCON 7B-Instruct")
msg.submit(predict,[msg, chatbot, max_docs],[msg, chatbot]).then(convert,[],[sou])
change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify])
falcon_button.click(dc.default_falcon_model, [], [model_verify])
# limit in HF, no need to set it
if "SET_LIMIT" == os.getenv("DEMO"):
DOC_DB_LIMIT = 4
MAX_NEW_TOKENS = 32
demo.launch(enable_queue=True)
|