Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from stablepy import (
|
|
7 |
check_scheduler_compatibility,
|
8 |
TASK_AND_PREPROCESSORS,
|
9 |
FACE_RESTORATION_MODELS,
|
|
|
10 |
)
|
11 |
from constants import (
|
12 |
DIRECTORY_MODELS,
|
@@ -37,15 +38,12 @@ from constants import (
|
|
37 |
EXAMPLES_GUI,
|
38 |
RESOURCES,
|
39 |
DIFFUSERS_CONTROLNET_MODEL,
|
|
|
|
|
40 |
)
|
41 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
42 |
import torch
|
43 |
import re
|
44 |
-
from stablepy import (
|
45 |
-
scheduler_names,
|
46 |
-
IP_ADAPTERS_SD,
|
47 |
-
IP_ADAPTERS_SDXL,
|
48 |
-
)
|
49 |
import time
|
50 |
from PIL import ImageFile
|
51 |
from utils import (
|
@@ -72,7 +70,9 @@ import warnings
|
|
72 |
from stablepy import logger
|
73 |
from diffusers import FluxPipeline
|
74 |
# import urllib.parse
|
|
|
75 |
|
|
|
76 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
77 |
torch.backends.cuda.matmul.allow_tf32 = True
|
78 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
@@ -966,9 +966,6 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
966 |
|
967 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
968 |
|
969 |
-
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
|
970 |
-
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
|
971 |
-
|
972 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
973 |
image_ip1 = gr.Image(label="IP Image", type="filepath")
|
974 |
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
|
@@ -993,7 +990,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
993 |
minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
|
994 |
info="The maximum proportional size of the generated image based on the uploaded image."
|
995 |
)
|
996 |
-
controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0])
|
997 |
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
998 |
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
999 |
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
|
|
7 |
check_scheduler_compatibility,
|
8 |
TASK_AND_PREPROCESSORS,
|
9 |
FACE_RESTORATION_MODELS,
|
10 |
+
scheduler_names,
|
11 |
)
|
12 |
from constants import (
|
13 |
DIRECTORY_MODELS,
|
|
|
38 |
EXAMPLES_GUI,
|
39 |
RESOURCES,
|
40 |
DIFFUSERS_CONTROLNET_MODEL,
|
41 |
+
IP_MODELS,
|
42 |
+
MODE_IP_OPTIONS,
|
43 |
)
|
44 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
45 |
import torch
|
46 |
import re
|
|
|
|
|
|
|
|
|
|
|
47 |
import time
|
48 |
from PIL import ImageFile
|
49 |
from utils import (
|
|
|
70 |
from stablepy import logger
|
71 |
from diffusers import FluxPipeline
|
72 |
# import urllib.parse
|
73 |
+
import subprocess
|
74 |
|
75 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
76 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
77 |
torch.backends.cuda.matmul.allow_tf32 = True
|
78 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
|
|
966 |
|
967 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
968 |
|
|
|
|
|
|
|
969 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
970 |
image_ip1 = gr.Image(label="IP Image", type="filepath")
|
971 |
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
|
|
|
990 |
minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
|
991 |
info="The maximum proportional size of the generated image based on the uploaded image."
|
992 |
)
|
993 |
+
controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0], allow_custom_value=True)
|
994 |
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
995 |
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
996 |
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|