import spaces import os from stablepy import ( Model_Diffusers, SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS, check_scheduler_compatibility, TASK_AND_PREPROCESSORS, FACE_RESTORATION_MODELS, ) from constants import ( DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS, DOWNLOAD_MODEL, DOWNLOAD_VAE, DOWNLOAD_LORA, LOAD_DIFFUSERS_FORMAT_MODEL, DIFFUSERS_FORMAT_LORAS, DOWNLOAD_EMBEDS, CIVITAI_API_KEY, HF_TOKEN, TASK_STABLEPY, TASK_MODEL_LIST, UPSCALER_DICT_GUI, UPSCALER_KEYS, PROMPT_W_OPTIONS, WARNING_MSG_VAE, SDXL_TASK, MODEL_TYPE_TASK, POST_PROCESSING_SAMPLER, SUBTITLE_GUI, HELP_GUI, EXAMPLES_GUI_HELP, EXAMPLES_GUI, RESOURCES, DIFFUSERS_CONTROLNET_MODEL, ) from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES import torch import re from stablepy import ( scheduler_names, IP_ADAPTERS_SD, IP_ADAPTERS_SDXL, ) import time from PIL import ImageFile from utils import ( download_things, get_model_list, extract_parameters, get_my_lora, get_model_type, extract_exif_data, create_mask_now, download_diffuser_repo, get_used_storage_gb, delete_model, progress_step_bar, html_template_message, escape_html, ) from image_processor import preprocessor_tab from datetime import datetime import gradio as gr import logging import diffusers import warnings from stablepy import logger from diffusers import FluxPipeline # import urllib.parse ImageFile.LOAD_TRUNCATED_IMAGES = True torch.backends.cuda.matmul.allow_tf32 = True # os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1" print(os.getenv("SPACES_ZERO_GPU")) directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS] for directory in directories: os.makedirs(directory, exist_ok=True) # Download stuffs for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]: if not os.path.exists(f"./models/{url.split('/')[-1]}"): download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY) for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]: if not os.path.exists(f"./vaes/{url.split('/')[-1]}"): download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY) for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]: if not os.path.exists(f"./loras/{url.split('/')[-1]}"): download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) # Download Embeddings for url_embed in DOWNLOAD_EMBEDS: if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"): download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY) # Build list models embed_list = get_model_list(DIRECTORY_EMBEDS) embed_list = [ (os.path.splitext(os.path.basename(emb))[0], emb) for emb in embed_list ] single_file_model_list = get_model_list(DIRECTORY_MODELS) model_list = LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list lora_model_list = get_model_list(DIRECTORY_LORAS) lora_model_list.insert(0, "None") lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS vae_model_list = get_model_list(DIRECTORY_VAES) vae_model_list.insert(0, "BakedVAE") vae_model_list.insert(0, "None") print('\033[33m🏁 Download and listing of valid models completed.\033[0m') flux_repo = "camenduru/FLUX.1-dev-diffusers" flux_pipe = FluxPipeline.from_pretrained( flux_repo, transformer=None, torch_dtype=torch.bfloat16, ).to("cuda") components = flux_pipe.components components.pop("transformer", None) components.pop("scheduler", None) delete_model(flux_repo) # components = None ####################### # GUI ####################### logging.getLogger("diffusers").setLevel(logging.ERROR) diffusers.utils.logging.set_verbosity(40) warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers") warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers") warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers") logger.setLevel(logging.DEBUG) CSS = """ .contain { display: flex; flex-direction: column; } #component-0 { height: 100%; } #gallery { flex-grow: 1; } #load_model { height: 50px; } """ class GuiSD: def __init__(self, stream=True): self.model = None self.status_loading = False self.sleep_loading = 4 self.last_load = datetime.now() self.inventory = [] def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3): while get_used_storage_gb() > storage_floor_gb: if len(self.inventory) < required_inventory_for_purge: break removal_candidate = self.inventory.pop(0) delete_model(removal_candidate) def update_inventory(self, model_name): if model_name not in single_file_model_list: self.inventory = [ m for m in self.inventory if m != model_name ] + [model_name] print(self.inventory) def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)): # download link model > model_name self.update_storage_models() vae_model = vae_model if vae_model != "None" else None model_type = get_model_type(model_name) dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16 if not os.path.exists(model_name): _ = download_diffuser_repo( repo_name=model_name, model_type=model_type, revision="main", token=True, ) self.update_inventory(model_name) for i in range(68): if not self.status_loading: self.status_loading = True if i > 0: time.sleep(self.sleep_loading) print("Previous model ops...") break time.sleep(0.5) print(f"Waiting queue {i}") yield "Waiting queue" self.status_loading = True yield f"Loading model: {model_name}" if vae_model == "BakedVAE": vae_model = model_name elif vae_model: vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5" if model_type != vae_type: gr.Warning(WARNING_MSG_VAE) print("Loading model...") try: start_time = time.time() if self.model is None: self.model = Model_Diffusers( base_model_id=model_name, task_name=TASK_STABLEPY[task], vae_model=vae_model, type_model_precision=dtype_model, retain_task_model_in_cache=False, controlnet_model=controlnet_model, device="cpu", env_components=components, ) self.model.advanced_params(image_preprocessor_cuda_active=True) else: if self.model.base_model_id != model_name: load_now_time = datetime.now() elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0) if elapsed_time <= 9: print("Waiting for the previous model's time ops...") time.sleep(9 - elapsed_time) self.model.device = torch.device("cpu") self.model.load_pipe( model_name, task_name=TASK_STABLEPY[task], vae_model=vae_model, type_model_precision=dtype_model, retain_task_model_in_cache=False, controlnet_model=controlnet_model, ) end_time = time.time() self.sleep_loading = max(min(int(end_time - start_time), 10), 4) except Exception as e: self.last_load = datetime.now() self.status_loading = False self.sleep_loading = 4 raise e self.last_load = datetime.now() self.status_loading = False yield f"Model loaded: {model_name}" # @spaces.GPU(duration=59) @torch.inference_mode() def generate_pipeline( self, prompt, neg_prompt, num_images, steps, cfg, clip_skip, seed, lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7, sampler, schedule_type, schedule_prediction_type, img_height, img_width, model_name, vae_model, task, image_control, preprocessor_name, preprocess_resolution, image_resolution, style_prompt, # list [] style_json_file, image_mask, strength, low_threshold, high_threshold, value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma, controlnet_output_scaling_in_unet, controlnet_start_threshold, controlnet_stop_threshold, textual_inversion, syntax_weights, upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength, hires_sampler, hires_prompt, hires_negative_prompt, hires_before_adetailer, hires_after_adetailer, hires_schedule_type, hires_guidance_scale, controlnet_model, loop_generation, leave_progress_bar, disable_progress_bar, image_previews, display_images, save_generated_images, filename_pattern, image_storage_location, retain_compel_previous_load, retain_detailfix_model_previous_load, retain_hires_model_previous_load, t2i_adapter_preprocessor, t2i_adapter_conditioning_scale, t2i_adapter_conditioning_factor, xformers_memory_efficient_attention, freeu, generator_in_cpu, adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, retain_task_cache_gui, guidance_rescale, image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, pag_scale, face_restoration_model, face_restoration_visibility, face_restoration_weight, ): info_state = html_template_message("Navigating latent space...") yield info_state, gr.update(), gr.update() vae_model = vae_model if vae_model != "None" else None loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7] vae_msg = f"VAE: {vae_model}" if vae_model else "" msg_lora = "" print("Config model:", model_name, vae_model, loras_list) task = TASK_STABLEPY[task] params_ip_img = [] params_ip_msk = [] params_ip_model = [] params_ip_mode = [] params_ip_scale = [] all_adapters = [ (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), ] if not hasattr(self.model.pipe, "transformer"): for imgip, mskip, modelip, modeip, scaleip in all_adapters: if imgip: params_ip_img.append(imgip) if mskip: params_ip_msk.append(mskip) params_ip_model.append(modelip) params_ip_mode.append(modeip) params_ip_scale.append(scaleip) concurrency = 5 self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False) if task != "txt2img" and not image_control: raise ValueError("Reference image is required. Please upload one in 'Image ControlNet/Inpaint/Img2img'.") if task in ["inpaint", "repaint"] and not image_mask: raise ValueError("Mask image not found. Upload one in 'Image Mask' to proceed.") if "https://" not in str(UPSCALER_DICT_GUI[upscaler_model_path]): upscaler_model = upscaler_model_path else: url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path] if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"): download_things(DIRECTORY_UPSCALERS, url_upscaler, HF_TOKEN) upscaler_model = f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}" logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) adetailer_params_A = { "face_detector_ad": face_detector_ad_a, "person_detector_ad": person_detector_ad_a, "hand_detector_ad": hand_detector_ad_a, "prompt": prompt_ad_a, "negative_prompt": negative_prompt_ad_a, "strength": strength_ad_a, # "image_list_task" : None, "mask_dilation": mask_dilation_a, "mask_blur": mask_blur_a, "mask_padding": mask_padding_a, "inpaint_only": adetailer_inpaint_only, "sampler": adetailer_sampler, } adetailer_params_B = { "face_detector_ad": face_detector_ad_b, "person_detector_ad": person_detector_ad_b, "hand_detector_ad": hand_detector_ad_b, "prompt": prompt_ad_b, "negative_prompt": negative_prompt_ad_b, "strength": strength_ad_b, # "image_list_task" : None, "mask_dilation": mask_dilation_b, "mask_blur": mask_blur_b, "mask_padding": mask_padding_b, } pipe_params = { "prompt": prompt, "negative_prompt": neg_prompt, "img_height": img_height, "img_width": img_width, "num_images": num_images, "num_steps": steps, "guidance_scale": cfg, "clip_skip": clip_skip, "pag_scale": float(pag_scale), "seed": seed, "image": image_control, "preprocessor_name": preprocessor_name, "preprocess_resolution": preprocess_resolution, "image_resolution": image_resolution, "style_prompt": style_prompt if style_prompt else "", "style_json_file": "", "image_mask": image_mask, # only for Inpaint "strength": strength, # only for Inpaint or ... "low_threshold": low_threshold, "high_threshold": high_threshold, "value_threshold": value_threshold, "distance_threshold": distance_threshold, "recolor_gamma_correction": float(recolor_gamma_correction), "tile_blur_sigma": int(tile_blur_sigma), "lora_A": lora1 if lora1 != "None" else None, "lora_scale_A": lora_scale1, "lora_B": lora2 if lora2 != "None" else None, "lora_scale_B": lora_scale2, "lora_C": lora3 if lora3 != "None" else None, "lora_scale_C": lora_scale3, "lora_D": lora4 if lora4 != "None" else None, "lora_scale_D": lora_scale4, "lora_E": lora5 if lora5 != "None" else None, "lora_scale_E": lora_scale5, "lora_F": lora6 if lora6 != "None" else None, "lora_scale_F": lora_scale6, "lora_G": lora7 if lora7 != "None" else None, "lora_scale_G": lora_scale7, "textual_inversion": embed_list if textual_inversion else [], "syntax_weights": syntax_weights, # "Classic" "sampler": sampler, "schedule_type": schedule_type, "schedule_prediction_type": schedule_prediction_type, "xformers_memory_efficient_attention": xformers_memory_efficient_attention, "gui_active": True, "loop_generation": loop_generation, "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), "control_guidance_start": float(controlnet_start_threshold), "control_guidance_end": float(controlnet_stop_threshold), "generator_in_cpu": generator_in_cpu, "FreeU": freeu, "adetailer_A": adetailer_active_a, "adetailer_A_params": adetailer_params_A, "adetailer_B": adetailer_active_b, "adetailer_B_params": adetailer_params_B, "leave_progress_bar": leave_progress_bar, "disable_progress_bar": disable_progress_bar, "image_previews": image_previews, "display_images": display_images, "save_generated_images": save_generated_images, "filename_pattern": filename_pattern, "image_storage_location": image_storage_location, "retain_compel_previous_load": retain_compel_previous_load, "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, "retain_hires_model_previous_load": retain_hires_model_previous_load, "t2i_adapter_preprocessor": t2i_adapter_preprocessor, "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), "upscaler_model_path": upscaler_model, "upscaler_increases_size": upscaler_increases_size, "upscaler_tile_size": upscaler_tile_size, "upscaler_tile_overlap": upscaler_tile_overlap, "hires_steps": hires_steps, "hires_denoising_strength": hires_denoising_strength, "hires_prompt": hires_prompt, "hires_negative_prompt": hires_negative_prompt, "hires_sampler": hires_sampler, "hires_before_adetailer": hires_before_adetailer, "hires_after_adetailer": hires_after_adetailer, "hires_schedule_type": hires_schedule_type, "hires_guidance_scale": hires_guidance_scale, "ip_adapter_image": params_ip_img, "ip_adapter_mask": params_ip_msk, "ip_adapter_model": params_ip_model, "ip_adapter_mode": params_ip_mode, "ip_adapter_scale": params_ip_scale, "face_restoration_model": face_restoration_model, "face_restoration_visibility": face_restoration_visibility, "face_restoration_weight": face_restoration_weight, } # kwargs for diffusers pipeline if guidance_rescale: pipe_params["guidance_rescale"] = guidance_rescale self.model.device = torch.device("cuda:0") if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras: self.model.pipe.transformer.to(self.model.device) print("transformer to cuda") actual_progress = 0 info_images = gr.update() for img, [seed, image_path, metadata] in self.model(**pipe_params): info_state = progress_step_bar(actual_progress, steps) actual_progress += concurrency if image_path: info_images = f"Seeds: {str(seed)}" if vae_msg: info_images = info_images + "
" + vae_msg if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error: msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later." print(msg_ram) msg_lora += f"
{msg_ram}" for status, lora in zip(self.model.lora_status, self.model.lora_memory): if status: msg_lora += f"
Loaded: {lora}" elif status is not None: msg_lora += f"
Error with: {lora}" if msg_lora: info_images += msg_lora info_images = info_images + "
" + "GENERATION DATA:
" + escape_html(metadata[-1]) + "
-------
" download_links = "
".join( [ f'Download Image {i + 1}' for i, path in enumerate(image_path) ] ) if save_generated_images: info_images += f"
{download_links}" info_state = "COMPLETE" yield info_state, img, info_images def dynamic_gpu_duration(func, duration, *args): # @torch.inference_mode() @spaces.GPU(duration=duration) def wrapped_func(): yield from func(*args) return wrapped_func() @spaces.GPU def dummy_gpu(): return None def sd_gen_generate_pipeline(*args): gpu_duration_arg = int(args[-1]) if args[-1] else 59 verbose_arg = int(args[-2]) load_lora_cpu = args[-3] generation_args = args[:-3] lora_list = [ None if item == "None" else item for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]] ] lora_status = [None] * sd_gen.model.num_loras msg_load_lora = "Updating LoRAs in GPU..." if load_lora_cpu: msg_load_lora = "Updating LoRAs in CPU..." if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras: yield msg_load_lora, gr.update(), gr.update() # Load lora in CPU if load_lora_cpu: lora_status = sd_gen.model.load_lora_on_the_fly( lora_A=lora_list[0], lora_scale_A=args[8], lora_B=lora_list[1], lora_scale_B=args[10], lora_C=lora_list[2], lora_scale_C=args[12], lora_D=lora_list[3], lora_scale_D=args[14], lora_E=lora_list[4], lora_scale_E=args[16], lora_F=lora_list[5], lora_scale_F=args[18], lora_G=lora_list[6], lora_scale_G=args[20], ) print(lora_status) sampler_name = args[21] schedule_type_name = args[22] _, _, msg_sampler = check_scheduler_compatibility( sd_gen.model.class_name, sampler_name, schedule_type_name ) if msg_sampler: gr.Warning(msg_sampler) if verbose_arg: for status, lora in zip(lora_status, lora_list): if status: gr.Info(f"LoRA loaded in CPU: {lora}") elif status is not None: gr.Warning(f"Failed to load LoRA: {lora}") if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu: lora_cache_msg = ", ".join( str(x) for x in sd_gen.model.lora_memory if x is not None ) gr.Info(f"LoRAs in cache: {lora_cache_msg}") msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}" if verbose_arg: gr.Info(msg_request) print(msg_request) yield msg_request.replace("\n", "
"), gr.update(), gr.update() start_time = time.time() # yield from sd_gen.generate_pipeline(*generation_args) yield from dynamic_gpu_duration( sd_gen.generate_pipeline, gpu_duration_arg, *generation_args, ) end_time = time.time() execution_time = end_time - start_time msg_task_complete = ( f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds" ) if verbose_arg: gr.Info(msg_task_complete) print(msg_task_complete) yield msg_task_complete, gr.update(), gr.update() @spaces.GPU(duration=15) def process_upscale(image, upscaler_name, upscaler_size): if image is None: return None from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata from stablepy import load_upscaler_model image = image.convert("RGB") exif_image = extract_exif_data(image) name_upscaler = UPSCALER_DICT_GUI[upscaler_name] if "https://" in str(name_upscaler): if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"): download_things(DIRECTORY_UPSCALERS, name_upscaler, HF_TOKEN) name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}" scaler_beta = load_upscaler_model(model=name_upscaler, tile=0, tile_overlap=8, device="cuda", half=True) image_up = scaler_beta.upscale(image, upscaler_size, True) image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image) return image_path # https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407 dynamic_gpu_duration.zerogpu = True sd_gen_generate_pipeline.zerogpu = True sd_gen = GuiSD() with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app: gr.Markdown("# 🧩 DiffuseCraft") gr.Markdown(SUBTITLE_GUI) with gr.Tab("Generation"): with gr.Row(): with gr.Column(scale=2): def update_task_options(model_name, task_name): new_choices = MODEL_TYPE_TASK[get_model_type(model_name)] if task_name not in new_choices: task_name = "txt2img" return gr.update(value=task_name, choices=new_choices) task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0]) model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True) prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt") neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt", value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, worst quality, low quality, very displeasing, (bad)") with gr.Row(equal_height=False): set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm") clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm") set_random_seed = gr.Button(value="🎲", variant="secondary", size="sm") generate_button = gr.Button(value="GENERATE IMAGE", variant="primary") model_name_gui.change( update_task_options, [model_name_gui, task_gui], [task_gui], ) load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain") result_images = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", # height="auto", interactive=False, preview=False, selected_index=50, ) actual_task_info = gr.HTML() with gr.Row(equal_height=False, variant="default"): gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)") with gr.Column(): verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info") load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU") with gr.Column(scale=1): steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps") cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG") sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler") schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0]) img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width") img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height") seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed") pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale") with gr.Row(): clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip") free_u_gui = gr.Checkbox(value=False, label="FreeU") with gr.Row(equal_height=False): def run_set_params_gui(base_prompt, name_model): valid_receptors = { # default values "prompt": gr.update(value=base_prompt), "neg_prompt": gr.update(value=""), "Steps": gr.update(value=30), "width": gr.update(value=1024), "height": gr.update(value=1024), "Seed": gr.update(value=-1), "Sampler": gr.update(value="Euler"), "CFG scale": gr.update(value=7.), # cfg "Clip skip": gr.update(value=True), "Model": gr.update(value=name_model), "Schedule type": gr.update(value="Automatic"), "PAG": gr.update(value=.0), "FreeU": gr.update(value=False), } valid_keys = list(valid_receptors.keys()) parameters = extract_parameters(base_prompt) # print(parameters) if "Sampler" in parameters: value_sampler = parameters["Sampler"] for s_type in SCHEDULE_TYPE_OPTIONS: if s_type in value_sampler: value_sampler = value_sampler.replace(s_type, "").strip() parameters["Sampler"] = value_sampler parameters["Schedule type"] = s_type for key, val in parameters.items(): # print(val) if key in valid_keys: try: if key == "Sampler": if val not in scheduler_names: continue if key == "Schedule type": if val not in SCHEDULE_TYPE_OPTIONS: val = "Automatic" elif key == "Clip skip": if "," in str(val): val = val.replace(",", "") if int(val) >= 2: val = True if key == "prompt": if ">" in val and "<" in val: val = re.sub(r'<[^>]+>', '', val) print("Removed LoRA written in the prompt") if key in ["prompt", "neg_prompt"]: val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip() if key in ["Steps", "width", "height", "Seed"]: val = int(val) if key == "FreeU": val = True if key in ["CFG scale", "PAG"]: val = float(val) if key == "Model": filtered_models = [m for m in model_list if val in m] if filtered_models: val = filtered_models[0] else: val = name_model if key == "Seed": continue valid_receptors[key] = gr.update(value=val) # print(val, type(val)) # print(valid_receptors) except Exception as e: print(str(e)) return [value for value in valid_receptors.values()] set_params_gui.click( run_set_params_gui, [prompt_gui, model_name_gui], [ prompt_gui, neg_prompt_gui, steps_gui, img_width_gui, img_height_gui, seed_gui, sampler_gui, cfg_gui, clip_skip_gui, model_name_gui, schedule_type_gui, pag_scale_gui, free_u_gui, ], ) def run_clear_prompt_gui(): return gr.update(value=""), gr.update(value="") clear_prompt_gui.click( run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui] ) def run_set_random_seed(): return -1 set_random_seed.click( run_set_random_seed, [], seed_gui ) num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images") prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1]) vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0]) with gr.Accordion("Hires fix", open=False, visible=True): upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0]) upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by") upscaler_tile_size_gui = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling") upscaler_tile_overlap_gui = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap") hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps") hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength") hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0]) hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used") hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3) hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3) with gr.Accordion("LoRA", open=False, visible=True): def lora_dropdown(label, visible=True): return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True, visible=visible) def lora_scale_slider(label, visible=True): return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label, visible=visible) lora1_gui = lora_dropdown("Lora1") lora_scale_1_gui = lora_scale_slider("Lora Scale 1") lora2_gui = lora_dropdown("Lora2") lora_scale_2_gui = lora_scale_slider("Lora Scale 2") lora3_gui = lora_dropdown("Lora3") lora_scale_3_gui = lora_scale_slider("Lora Scale 3") lora4_gui = lora_dropdown("Lora4") lora_scale_4_gui = lora_scale_slider("Lora Scale 4") lora5_gui = lora_dropdown("Lora5") lora_scale_5_gui = lora_scale_slider("Lora Scale 5") lora6_gui = lora_dropdown("Lora6", visible=False) lora_scale_6_gui = lora_scale_slider("Lora Scale 6", visible=False) lora7_gui = lora_dropdown("Lora7", visible=False) lora_scale_7_gui = lora_scale_slider("Lora Scale 7", visible=False) with gr.Accordion("From URL", open=False, visible=True): text_lora = gr.Textbox( label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", lines=1, info="It has to be .safetensors files, and you can also download them from Hugging Face.", ) romanize_text = gr.Checkbox(value=False, label="Transliterate name", visible=False) button_lora = gr.Button("Get and Refresh the LoRA Lists") new_lora_status = gr.HTML() button_lora.click( get_my_lora, [text_lora, romanize_text], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui, new_lora_status] ) with gr.Accordion("Face restoration", open=False, visible=True): face_rest_options = [None] + FACE_RESTORATION_MODELS face_restoration_model_gui = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0]) face_restoration_visibility_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility") face_restoration_weight_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)") with gr.Accordion("IP-Adapter", open=False, visible=True): IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))) MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"] with gr.Accordion("IP-Adapter 1", open=False, visible=True): image_ip1 = gr.Image(label="IP Image", type="filepath") mask_ip1 = gr.Image(label="IP Mask", type="filepath") model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS) mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS) scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") with gr.Accordion("IP-Adapter 2", open=False, visible=True): image_ip2 = gr.Image(label="IP Image", type="filepath") mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath") model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS) mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS) scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale") with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True): image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath") image_mask_gui = gr.Image(label="Image Mask", type="filepath") strength_gui = gr.Slider( minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength", info="This option adjusts the level of changes for img2img, repaint and inpaint." ) image_resolution_gui = gr.Slider( minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution", info="The maximum proportional size of the generated image based on the uploaded image." ) controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0]) control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet") control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)") control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)") preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"]) def change_preprocessor_choices(task): task = TASK_STABLEPY[task] if task in TASK_AND_PREPROCESSORS.keys(): choices_task = TASK_AND_PREPROCESSORS[task] else: choices_task = TASK_AND_PREPROCESSORS["canny"] return gr.update(choices=choices_task, value=choices_task[0]) task_gui.change( change_preprocessor_choices, [task_gui], [preprocessor_name_gui], ) preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution") low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold") high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold") value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold") distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold") recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction") tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma") with gr.Accordion("T2I adapter", open=False, visible=False): t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor") adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale") adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)") with gr.Accordion("Styles", open=False, visible=True): try: style_names_found = sd_gen.model.STYLE_NAMES except Exception: style_names_found = STYLE_NAMES style_prompt_gui = gr.Dropdown( style_names_found, multiselect=True, value=None, label="Style Prompt", interactive=True, ) style_json_gui = gr.File(label="Style JSON File") style_button = gr.Button("Load styles") def load_json_style_file(json): if not sd_gen.model: gr.Info("First load the model") return gr.update(value=None, choices=STYLE_NAMES) sd_gen.model.load_style_file(json) gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded") return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES) style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui]) with gr.Accordion("Textual inversion", open=False, visible=False): active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt") with gr.Accordion("Detailfix", open=False, visible=True): # Adetailer Inpaint Only adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True) # Adetailer Verbose adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False) # Adetailer Sampler adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0]) with gr.Accordion("Detailfix A", open=False, visible=True): # Adetailer A adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False) prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True) person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=False) hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False) mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1) mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1) with gr.Accordion("Detailfix B", open=False, visible=True): # Adetailer B adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False) prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3) negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3) strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0) face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False) person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True) hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False) mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1) mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1) mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1) with gr.Accordion("Other settings", open=False, visible=True): schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0]) guidance_rescale_gui = gr.Number(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5) save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images") filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1) hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer") hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer") generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU") with gr.Accordion("More settings", open=False, visible=False): loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation") retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache") leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar") disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar") display_images_gui = gr.Checkbox(value=False, label="Display Images") image_previews_gui = gr.Checkbox(value=True, label="Image Previews") image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location") retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load") retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load") retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load") xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention") with gr.Accordion("Examples and help", open=False, visible=True): gr.Markdown(HELP_GUI) gr.Markdown(EXAMPLES_GUI_HELP) gr.Examples( examples=EXAMPLES_GUI, fn=sd_gen.generate_pipeline, inputs=[ prompt_gui, neg_prompt_gui, steps_gui, cfg_gui, seed_gui, lora1_gui, lora_scale_1_gui, sampler_gui, img_height_gui, img_width_gui, model_name_gui, task_gui, image_control, image_resolution_gui, strength_gui, control_net_output_scaling_gui, control_net_start_threshold_gui, control_net_stop_threshold_gui, prompt_syntax_gui, upscaler_model_path_gui, gpu_duration_gui, load_lora_cpu_gui, ], outputs=[load_model_gui, result_images, actual_task_info], cache_examples=False, ) gr.Markdown(RESOURCES) with gr.Tab("Inpaint mask maker", render=True): with gr.Row(): with gr.Column(scale=2): image_base = gr.ImageEditor( sources=["upload", "clipboard"], # crop_size="1:1", # enable crop (or disable it) # transforms=["crop"], brush=gr.Brush( default_size="16", # or leave it as 'auto' color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it # default_color="black", # html names are supported colors=[ "rgba(0, 0, 0, 1)", # rgb(a) "rgba(0, 0, 0, 0.1)", "rgba(255, 255, 255, 0.1)", # "hsl(360, 120, 120)" # in fact any valid colorstring ] ), eraser=gr.Eraser(default_size="16") ) invert_mask = gr.Checkbox(value=False, label="Invert mask") btn = gr.Button("Create mask") with gr.Column(scale=1): img_source = gr.Image(interactive=False) img_result = gr.Image(label="Mask image", show_label=True, interactive=False) btn_send = gr.Button("Send to the first tab") btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result]) def send_img(img_source, img_result): return img_source, img_result btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui]) with gr.Tab("PNG Info"): with gr.Row(): with gr.Column(): image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"]) with gr.Column(): result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99) image_metadata.change( fn=extract_exif_data, inputs=[image_metadata], outputs=[result_metadata], ) with gr.Tab("Upscaler"): with gr.Row(): with gr.Column(): USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]] image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"]) upscaler_tab = gr.Dropdown(label="Upscaler", choices=USCALER_TAB_KEYS, value=USCALER_TAB_KEYS[5]) upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by") generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary") with gr.Column(): result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png") generate_button_up_tab.click( fn=process_upscale, inputs=[image_up_tab, upscaler_tab, upscaler_size_tab], outputs=[result_up_tab], ) with gr.Tab("Preprocessor", render=True): preprocessor_tab() generate_button.click( fn=sd_gen.load_new_model, inputs=[ model_name_gui, vae_model_gui, task_gui, controlnet_model_gui, ], outputs=[load_model_gui], queue=True, show_progress="minimal", ).success( fn=sd_gen_generate_pipeline, # fn=sd_gen.generate_pipeline, inputs=[ prompt_gui, neg_prompt_gui, num_images_gui, steps_gui, cfg_gui, clip_skip_gui, seed_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui, lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui, lora6_gui, lora_scale_6_gui, lora7_gui, lora_scale_7_gui, sampler_gui, schedule_type_gui, schedule_prediction_type_gui, img_height_gui, img_width_gui, model_name_gui, vae_model_gui, task_gui, image_control, preprocessor_name_gui, preprocess_resolution_gui, image_resolution_gui, style_prompt_gui, style_json_gui, image_mask_gui, strength_gui, low_threshold_gui, high_threshold_gui, value_threshold_gui, distance_threshold_gui, recolor_gamma_correction_gui, tile_blur_sigma_gui, control_net_output_scaling_gui, control_net_start_threshold_gui, control_net_stop_threshold_gui, active_textual_inversion_gui, prompt_syntax_gui, upscaler_model_path_gui, upscaler_increases_size_gui, upscaler_tile_size_gui, upscaler_tile_overlap_gui, hires_steps_gui, hires_denoising_strength_gui, hires_sampler_gui, hires_prompt_gui, hires_negative_prompt_gui, hires_before_adetailer_gui, hires_after_adetailer_gui, hires_schedule_type_gui, hires_guidance_scale_gui, controlnet_model_gui, loop_generation_gui, leave_progress_bar_gui, disable_progress_bar_gui, image_previews_gui, display_images_gui, save_generated_images_gui, filename_pattern_gui, image_storage_location_gui, retain_compel_previous_load_gui, retain_detailfix_model_previous_load_gui, retain_hires_model_previous_load_gui, t2i_adapter_preprocessor_gui, adapter_conditioning_scale_gui, adapter_conditioning_factor_gui, xformers_memory_efficient_attention_gui, free_u_gui, generator_in_cpu_gui, adetailer_inpaint_only_gui, adetailer_verbose_gui, adetailer_sampler_gui, adetailer_active_a_gui, prompt_ad_a_gui, negative_prompt_ad_a_gui, strength_ad_a_gui, face_detector_ad_a_gui, person_detector_ad_a_gui, hand_detector_ad_a_gui, mask_dilation_a_gui, mask_blur_a_gui, mask_padding_a_gui, adetailer_active_b_gui, prompt_ad_b_gui, negative_prompt_ad_b_gui, strength_ad_b_gui, face_detector_ad_b_gui, person_detector_ad_b_gui, hand_detector_ad_b_gui, mask_dilation_b_gui, mask_blur_b_gui, mask_padding_b_gui, retain_task_cache_gui, guidance_rescale_gui, image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, pag_scale_gui, face_restoration_model_gui, face_restoration_visibility_gui, face_restoration_weight_gui, load_lora_cpu_gui, verbose_info_gui, gpu_duration_gui, ], outputs=[load_model_gui, result_images, actual_task_info], queue=True, show_progress="minimal", ) app.queue() app.launch( show_error=True, debug=True, allowed_paths=["./images/"], )