Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,7 @@ def newton_interpolation_steps_latex(x, y, x_interp):
|
|
52 |
steps_latex = []
|
53 |
|
54 |
# Initial step in LaTeX
|
55 |
-
steps_latex.append(
|
56 |
|
57 |
for i in range(1, n):
|
58 |
term = 1.0
|
@@ -61,31 +61,31 @@ def newton_interpolation_steps_latex(x, y, x_interp):
|
|
61 |
current_term_value = dd_table[0][i] * term
|
62 |
|
63 |
# Construct divided difference notation in LaTeX: f[x_0, ..., x_i]
|
64 |
-
dd_notation_latex =
|
65 |
for k in range(1, i + 1):
|
66 |
-
dd_notation_latex +=
|
67 |
-
dd_notation_latex += "]"
|
68 |
|
69 |
# Construct polynomial term in LaTeX: (x - x_0)(x - x_1)...(x - x_{i-1})
|
70 |
polynomial_term_latex = ""
|
71 |
for j in range(i):
|
72 |
-
polynomial_term_latex +=
|
73 |
if not polynomial_term_latex:
|
74 |
-
polynomial_term_latex = "1"
|
75 |
|
76 |
# Step description in LaTeX
|
77 |
-
step_latex_description =
|
78 |
if i > 0:
|
79 |
-
term_values_latex = "
|
80 |
step_latex_description += term_values_latex
|
81 |
else:
|
82 |
-
step_latex_description =
|
83 |
|
84 |
-
step_latex_description +=
|
85 |
steps_latex.append(step_latex_description)
|
86 |
|
87 |
-
steps_latex.append(
|
88 |
-
y_interp += current_term_value
|
89 |
|
90 |
return y_interp, dd_table_df, steps_latex
|
91 |
|
@@ -93,9 +93,9 @@ def newton_interpolation_steps_latex(x, y, x_interp):
|
|
93 |
st.title("Newton's Divided Difference Interpolation")
|
94 |
st.write("Enter the x and y values as comma-separated lists, and the x value you want to interpolate.")
|
95 |
|
96 |
-
x_values_input = st.text_area("Enter x values (comma-separated):", "
|
97 |
-
y_values_input = st.text_area("Enter y values (comma-separated):", "
|
98 |
-
x_interpolate = st.number_input("Enter x value to interpolate:", value=
|
99 |
|
100 |
if st.button("Calculate Interpolated Value with Steps (LaTeX)"):
|
101 |
try:
|
|
|
52 |
steps_latex = []
|
53 |
|
54 |
# Initial step in LaTeX
|
55 |
+
steps_latex.append(r"Initial value: $P(x) = f[x_0] = {:.4f}$".format(y_interp))
|
56 |
|
57 |
for i in range(1, n):
|
58 |
term = 1.0
|
|
|
61 |
current_term_value = dd_table[0][i] * term
|
62 |
|
63 |
# Construct divided difference notation in LaTeX: f[x_0, ..., x_i]
|
64 |
+
dd_notation_latex = r"f[x_0"
|
65 |
for k in range(1, i + 1):
|
66 |
+
dd_notation_latex += r", x_{" + str(k) + r"}"
|
67 |
+
dd_notation_latex += r"]"
|
68 |
|
69 |
# Construct polynomial term in LaTeX: (x - x_0)(x - x_1)...(x - x_{i-1})
|
70 |
polynomial_term_latex = ""
|
71 |
for j in range(i):
|
72 |
+
polynomial_term_latex += r"(x - " + str(x[j]) + r")"
|
73 |
if not polynomial_term_latex:
|
74 |
+
polynomial_term_latex = "1"
|
75 |
|
76 |
# Step description in LaTeX
|
77 |
+
step_latex_description = r"Add term {}: ${} \times {} = {:.4f} \times $".format(i, dd_notation_latex, polynomial_term_latex.replace('x', str(x_interp)), dd_table[0][i])
|
78 |
if i > 0:
|
79 |
+
term_values_latex = r" $\times$ ".join([r"({:.1f} - {})".format(x_interp, val) for val in x[:i]]) # more robust float formatting
|
80 |
step_latex_description += term_values_latex
|
81 |
else:
|
82 |
+
step_latex_description = r"Initial value: $f[x_0] = {:.4f}$".format(dd_table[0][0]) # Should not happen in loop, but for clarity
|
83 |
|
84 |
+
step_latex_description += r" = {:.4f}$".format(current_term_value)
|
85 |
steps_latex.append(step_latex_description)
|
86 |
|
87 |
+
steps_latex.append(r"Current $P(x) = {:.4f}$".format(y_interp + current_term_value)) # Corrected accumulation here
|
88 |
+
y_interp += current_term_value # Accumulate interpolation value here
|
89 |
|
90 |
return y_interp, dd_table_df, steps_latex
|
91 |
|
|
|
93 |
st.title("Newton's Divided Difference Interpolation")
|
94 |
st.write("Enter the x and y values as comma-separated lists, and the x value you want to interpolate.")
|
95 |
|
96 |
+
x_values_input = st.text_area("Enter x values (comma-separated):", "2000, 2005, 2010, 2015")
|
97 |
+
y_values_input = st.text_area("Enter y values (comma-separated):", "1000, 1040, 1032, 1025")
|
98 |
+
x_interpolate = st.number_input("Enter x value to interpolate:", value=2001.0)
|
99 |
|
100 |
if st.button("Calculate Interpolated Value with Steps (LaTeX)"):
|
101 |
try:
|