r3hab commited on
Commit
a715df3
·
verified ·
1 Parent(s): a590acc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +140 -0
app.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+
4
+ def divided_differences(x, y):
5
+ """
6
+ Calculates the divided differences table for Newton's Divided Difference formula.
7
+
8
+ Args:
9
+ x (list): List of x-values.
10
+ y (list): List of y-values corresponding to x-values.
11
+
12
+ Returns:
13
+ pandas.DataFrame: Divided differences table.
14
+ """
15
+ n = len(y)
16
+ if n == 0:
17
+ return pd.DataFrame()
18
+ dd_table = pd.DataFrame(index=range(n), columns=range(n))
19
+ dd_table[0] = pd.Series(y)
20
+ for j in range(1, n):
21
+ for i in range(n - j):
22
+ dd_table.loc[i, j] = (dd_table.loc[i+1, j-1] - dd_table.loc[i, j-1]) / (float(x[i+j]) - float(x[i]))
23
+ return dd_table
24
+
25
+ def newton_interpolation_steps_latex(x, y, x_interp):
26
+ """
27
+ Calculates the interpolated value at x_interp using Newton's Divided Difference formula and provides step-by-step solution in LaTeX.
28
+
29
+ Args:
30
+ x (list): List of x-values.
31
+ y (list): List of y-values corresponding to x-values.
32
+ x_interp (float): The x-value to interpolate at.
33
+
34
+ Returns:
35
+ tuple: (interpolated_y, dd_table, steps_latex)
36
+ interpolated_y (float): The interpolated y-value at x_interp.
37
+ dd_table (pandas.DataFrame): The divided differences table.
38
+ steps_latex (list of str): List of LaTeX strings describing each step of the calculation.
39
+ Returns (None, None, None) if there's an error (e.g., empty input).
40
+ """
41
+ n = len(x)
42
+ if n == 0 or len(y) != n:
43
+ return None, None, None
44
+
45
+ dd_table_df = divided_differences(x, y)
46
+ if dd_table_df.empty:
47
+ return None, None, None
48
+
49
+ dd_table = dd_table_df.values.tolist()
50
+
51
+ y_interp = dd_table[0][0]
52
+ steps_latex = []
53
+
54
+ # Initial step in LaTeX
55
+ steps_latex.append(f"Initial value: $P(x) = f[x_0] = {y_interp:.4f}$")
56
+
57
+ for i in range(1, n):
58
+ term = 1.0
59
+ for j in range(i):
60
+ term *= (x_interp - float(x[j]))
61
+ current_term_value = dd_table[0][i] * term
62
+
63
+ # Construct divided difference notation in LaTeX: f[x_0, ..., x_i]
64
+ dd_notation_latex = f"f[x_0"
65
+ for k in range(1, i + 1):
66
+ dd_notation_latex += f", x_{k}"
67
+ dd_notation_latex += "]"
68
+
69
+ # Construct polynomial term in LaTeX: (x - x_0)(x - x_1)...(x - x_{i-1})
70
+ polynomial_term_latex = ""
71
+ for j in range(i):
72
+ polynomial_term_latex += f"(x - {x[j]})"
73
+ if not polynomial_term_latex:
74
+ polynomial_term_latex = "1" # For i=0 case which is handled outside loop, but for consistency
75
+
76
+ # Step description in LaTeX
77
+ step_latex_description = f"Add term {i}: ${dd_notation_latex} \\times {polynomial_term_latex.replace('x', str(x_interp))} = {dd_table[0][i]:.4f} \\times "
78
+ if i > 0:
79
+ term_values_latex = " \\times ".join([f"({x_interp} - {x[j]})" for j in range(i)])
80
+ step_latex_description += term_values_latex
81
+ else:
82
+ step_latex_description = f"Initial value: $f[x_0] = {dd_table[0][0]:.4f}$" # Should not happen in loop, but for clarity
83
+
84
+ step_latex_description += f" = {current_term_value:.4f}$"
85
+ steps_latex.append(step_latex_description)
86
+
87
+ steps_latex.append(f"Current $P(x) = {y_interp:.4f}$")
88
+ y_interp += current_term_value
89
+
90
+ return y_interp, dd_table_df, steps_latex
91
+
92
+
93
+ st.title("Newton's Divided Difference Interpolation")
94
+ st.write("Enter the x and y values as comma-separated lists, and the x value you want to interpolate.")
95
+
96
+ x_values_input = st.text_area("Enter x values (comma-separated):", "0, 1, 2")
97
+ y_values_input = st.text_area("Enter y values (comma-separated):", "1, 3, 2")
98
+ x_interpolate = st.number_input("Enter x value to interpolate:", value=1.5)
99
+
100
+ if st.button("Calculate Interpolated Value with Steps (LaTeX)"):
101
+ try:
102
+ x_values_str = x_values_input.strip()
103
+ y_values_str = y_values_input.strip()
104
+
105
+ if not x_values_str or not y_values_str:
106
+ st.error("Please enter both x and y values.")
107
+ else:
108
+ x_values = [val.strip() for val in x_values_str.split(',')]
109
+ y_values = [val.strip() for val in y_values_str.split(',')]
110
+
111
+ if len(x_values) != len(y_values):
112
+ st.error("The number of x values and y values must be the same.")
113
+ else:
114
+ try:
115
+ x_values_float = [float(x) for x in x_values]
116
+ y_values_float = [float(y) for y in y_values]
117
+
118
+ if not all(isinstance(x, (int, float)) for x in x_values_float) or not all(isinstance(y, (int, float)) for y in y_values_float):
119
+ st.error("Please ensure all x and y values are numbers.")
120
+ else:
121
+ interpolated_y, dd_table, steps_latex = newton_interpolation_steps_latex(x_values_float, y_values_float, x_interpolate)
122
+
123
+ if interpolated_y is not None:
124
+ st.success(f"The interpolated value at x = {x_interpolate} is: **{interpolated_y:.4f}**")
125
+
126
+ st.subheader("Divided Difference Table:")
127
+ st.dataframe(dd_table.fillna(''))
128
+
129
+ st.subheader("Step-by-step Calculation:")
130
+ for step_latex in steps_latex:
131
+ st.latex(step_latex)
132
+
133
+ else:
134
+ st.error("An error occurred during interpolation. Please check your input data.")
135
+
136
+ except ValueError:
137
+ st.error("Invalid input. Please enter comma-separated numbers for x and y values.")
138
+
139
+ except Exception as e:
140
+ st.error(f"An unexpected error occurred: {e}")