Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def divided_differences(x, y):
|
5 |
+
"""
|
6 |
+
Calculates the divided differences table for Newton's Divided Difference formula.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
x (list): List of x-values.
|
10 |
+
y (list): List of y-values corresponding to x-values.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
pandas.DataFrame: Divided differences table.
|
14 |
+
"""
|
15 |
+
n = len(y)
|
16 |
+
if n == 0:
|
17 |
+
return pd.DataFrame()
|
18 |
+
dd_table = pd.DataFrame(index=range(n), columns=range(n))
|
19 |
+
dd_table[0] = pd.Series(y)
|
20 |
+
for j in range(1, n):
|
21 |
+
for i in range(n - j):
|
22 |
+
dd_table.loc[i, j] = (dd_table.loc[i+1, j-1] - dd_table.loc[i, j-1]) / (float(x[i+j]) - float(x[i]))
|
23 |
+
return dd_table
|
24 |
+
|
25 |
+
def newton_interpolation_steps_latex(x, y, x_interp):
|
26 |
+
"""
|
27 |
+
Calculates the interpolated value at x_interp using Newton's Divided Difference formula and provides step-by-step solution in LaTeX.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
x (list): List of x-values.
|
31 |
+
y (list): List of y-values corresponding to x-values.
|
32 |
+
x_interp (float): The x-value to interpolate at.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
tuple: (interpolated_y, dd_table, steps_latex)
|
36 |
+
interpolated_y (float): The interpolated y-value at x_interp.
|
37 |
+
dd_table (pandas.DataFrame): The divided differences table.
|
38 |
+
steps_latex (list of str): List of LaTeX strings describing each step of the calculation.
|
39 |
+
Returns (None, None, None) if there's an error (e.g., empty input).
|
40 |
+
"""
|
41 |
+
n = len(x)
|
42 |
+
if n == 0 or len(y) != n:
|
43 |
+
return None, None, None
|
44 |
+
|
45 |
+
dd_table_df = divided_differences(x, y)
|
46 |
+
if dd_table_df.empty:
|
47 |
+
return None, None, None
|
48 |
+
|
49 |
+
dd_table = dd_table_df.values.tolist()
|
50 |
+
|
51 |
+
y_interp = dd_table[0][0]
|
52 |
+
steps_latex = []
|
53 |
+
|
54 |
+
# Initial step in LaTeX
|
55 |
+
steps_latex.append(f"Initial value: $P(x) = f[x_0] = {y_interp:.4f}$")
|
56 |
+
|
57 |
+
for i in range(1, n):
|
58 |
+
term = 1.0
|
59 |
+
for j in range(i):
|
60 |
+
term *= (x_interp - float(x[j]))
|
61 |
+
current_term_value = dd_table[0][i] * term
|
62 |
+
|
63 |
+
# Construct divided difference notation in LaTeX: f[x_0, ..., x_i]
|
64 |
+
dd_notation_latex = f"f[x_0"
|
65 |
+
for k in range(1, i + 1):
|
66 |
+
dd_notation_latex += f", x_{k}"
|
67 |
+
dd_notation_latex += "]"
|
68 |
+
|
69 |
+
# Construct polynomial term in LaTeX: (x - x_0)(x - x_1)...(x - x_{i-1})
|
70 |
+
polynomial_term_latex = ""
|
71 |
+
for j in range(i):
|
72 |
+
polynomial_term_latex += f"(x - {x[j]})"
|
73 |
+
if not polynomial_term_latex:
|
74 |
+
polynomial_term_latex = "1" # For i=0 case which is handled outside loop, but for consistency
|
75 |
+
|
76 |
+
# Step description in LaTeX
|
77 |
+
step_latex_description = f"Add term {i}: ${dd_notation_latex} \\times {polynomial_term_latex.replace('x', str(x_interp))} = {dd_table[0][i]:.4f} \\times "
|
78 |
+
if i > 0:
|
79 |
+
term_values_latex = " \\times ".join([f"({x_interp} - {x[j]})" for j in range(i)])
|
80 |
+
step_latex_description += term_values_latex
|
81 |
+
else:
|
82 |
+
step_latex_description = f"Initial value: $f[x_0] = {dd_table[0][0]:.4f}$" # Should not happen in loop, but for clarity
|
83 |
+
|
84 |
+
step_latex_description += f" = {current_term_value:.4f}$"
|
85 |
+
steps_latex.append(step_latex_description)
|
86 |
+
|
87 |
+
steps_latex.append(f"Current $P(x) = {y_interp:.4f}$")
|
88 |
+
y_interp += current_term_value
|
89 |
+
|
90 |
+
return y_interp, dd_table_df, steps_latex
|
91 |
+
|
92 |
+
|
93 |
+
st.title("Newton's Divided Difference Interpolation")
|
94 |
+
st.write("Enter the x and y values as comma-separated lists, and the x value you want to interpolate.")
|
95 |
+
|
96 |
+
x_values_input = st.text_area("Enter x values (comma-separated):", "0, 1, 2")
|
97 |
+
y_values_input = st.text_area("Enter y values (comma-separated):", "1, 3, 2")
|
98 |
+
x_interpolate = st.number_input("Enter x value to interpolate:", value=1.5)
|
99 |
+
|
100 |
+
if st.button("Calculate Interpolated Value with Steps (LaTeX)"):
|
101 |
+
try:
|
102 |
+
x_values_str = x_values_input.strip()
|
103 |
+
y_values_str = y_values_input.strip()
|
104 |
+
|
105 |
+
if not x_values_str or not y_values_str:
|
106 |
+
st.error("Please enter both x and y values.")
|
107 |
+
else:
|
108 |
+
x_values = [val.strip() for val in x_values_str.split(',')]
|
109 |
+
y_values = [val.strip() for val in y_values_str.split(',')]
|
110 |
+
|
111 |
+
if len(x_values) != len(y_values):
|
112 |
+
st.error("The number of x values and y values must be the same.")
|
113 |
+
else:
|
114 |
+
try:
|
115 |
+
x_values_float = [float(x) for x in x_values]
|
116 |
+
y_values_float = [float(y) for y in y_values]
|
117 |
+
|
118 |
+
if not all(isinstance(x, (int, float)) for x in x_values_float) or not all(isinstance(y, (int, float)) for y in y_values_float):
|
119 |
+
st.error("Please ensure all x and y values are numbers.")
|
120 |
+
else:
|
121 |
+
interpolated_y, dd_table, steps_latex = newton_interpolation_steps_latex(x_values_float, y_values_float, x_interpolate)
|
122 |
+
|
123 |
+
if interpolated_y is not None:
|
124 |
+
st.success(f"The interpolated value at x = {x_interpolate} is: **{interpolated_y:.4f}**")
|
125 |
+
|
126 |
+
st.subheader("Divided Difference Table:")
|
127 |
+
st.dataframe(dd_table.fillna(''))
|
128 |
+
|
129 |
+
st.subheader("Step-by-step Calculation:")
|
130 |
+
for step_latex in steps_latex:
|
131 |
+
st.latex(step_latex)
|
132 |
+
|
133 |
+
else:
|
134 |
+
st.error("An error occurred during interpolation. Please check your input data.")
|
135 |
+
|
136 |
+
except ValueError:
|
137 |
+
st.error("Invalid input. Please enter comma-separated numbers for x and y values.")
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
st.error(f"An unexpected error occurred: {e}")
|