Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def lagrange_basis(x, i, x_points):
|
6 |
+
basis = 1.0
|
7 |
+
st.latex(f"L_{{{i}}}(x) = ")
|
8 |
+
for j in range(len(x_points)):
|
9 |
+
if j != i:
|
10 |
+
basis *= (x - x_points[j]) / (x_points[i] - x_points[j])
|
11 |
+
st.latex(f"\\cdot \\frac{{(x - x_{{{j}}})}}{{(x_{{{i}}} - x_{{{j}}})}} = \\frac{{({x} - {x_points[j]})}}{{({x_points[i]} - {x_points[j]})}}")
|
12 |
+
return basis
|
13 |
+
|
14 |
+
def lagrange_interpolation(x, x_points, y_points):
|
15 |
+
result = 0.0
|
16 |
+
st.header("Calculation Steps")
|
17 |
+
|
18 |
+
for i in range(len(x_points)):
|
19 |
+
with st.expander(f"Term for (x₀,y₀) = ({x_points[i]}, {y_points[i]})", expanded=True):
|
20 |
+
st.subheader(f"Calculating L_{i}({x}) * y_{i}")
|
21 |
+
|
22 |
+
col1, col2 = st.columns(2)
|
23 |
+
with col1:
|
24 |
+
st.markdown("**Basis Polynomial Calculation**")
|
25 |
+
basis = lagrange_basis(x, i, x_points)
|
26 |
+
|
27 |
+
with col2:
|
28 |
+
st.markdown("**Term Contribution**")
|
29 |
+
term = y_points[i] * basis
|
30 |
+
st.latex(f"y_{i} \\cdot L_{i}({x}) = {y_points[i]} \\times {basis:.4f} = {term:.4f}")
|
31 |
+
|
32 |
+
result += term
|
33 |
+
st.markdown(f"**Current Total**: {result:.4f}")
|
34 |
+
|
35 |
+
return result
|
36 |
+
|
37 |
+
# Streamlit UI
|
38 |
+
st.title("Lagrange Interpolation Visualizer")
|
39 |
+
st.markdown("Interactive calculator with step-by-step LaTeX visualization")
|
40 |
+
|
41 |
+
# Input section
|
42 |
+
st.sidebar.header("Input Parameters")
|
43 |
+
x_points = st.sidebar.text_input("X values (comma separated)", "1500,1600,1700,1900").split(',')
|
44 |
+
x_points = [float(x.strip()) for x in x_points]
|
45 |
+
y_points = st.sidebar.text_input("Y values (comma separated)", "1234,2345,4567,6789").split(',')
|
46 |
+
y_points = [float(y.strip()) for y in y_points]
|
47 |
+
x_target = st.sidebar.number_input("Target X value", value=1800.0)
|
48 |
+
|
49 |
+
# Main calculation
|
50 |
+
if len(x_points) != len(y_points):
|
51 |
+
st.error("X and Y values must have the same number of elements!")
|
52 |
+
else:
|
53 |
+
st.header("Interpolation Formula")
|
54 |
+
st.latex(r"P(x) = \sum_{i=0}^{n} y_i \cdot L_i(x)")
|
55 |
+
st.latex(r"L_i(x) = \prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}")
|
56 |
+
|
57 |
+
result = lagrange_interpolation(x_target, x_points, y_points)
|
58 |
+
|
59 |
+
st.success(f"**Final Interpolated Value**: P({x_target}) = {result:.2f}")
|
60 |
+
|
61 |
+
# Visualization
|
62 |
+
st.header("Visualization")
|
63 |
+
fig, ax = plt.subplots()
|
64 |
+
|
65 |
+
# Plot original points
|
66 |
+
ax.scatter(x_points, y_points, c='red', label='Original Data')
|
67 |
+
|
68 |
+
# Plot interpolated point
|
69 |
+
ax.scatter([x_target], [result], c='blue', s=100, label='Interpolated Point')
|
70 |
+
|
71 |
+
# Plot polynomial curve
|
72 |
+
x_vals = np.linspace(min(x_points)-50, max(x_points)+50, 400)
|
73 |
+
y_vals = [lagrange_interpolation(x, x_points, y_points) for x in x_vals]
|
74 |
+
ax.plot(x_vals, y_vals, '--', label='Interpolation Polynomial')
|
75 |
+
|
76 |
+
ax.set_xlabel('X')
|
77 |
+
ax.set_ylabel('Y')
|
78 |
+
ax.legend()
|
79 |
+
st.pyplot(fig)
|