Spaces:
Running
Running
Create 1.html
Browse files
1.html
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>Newton's Divided Difference Interpolation</title>
|
5 |
+
<script src="https://polyfill.io/v3/polyfill.min.js?presets=full"></script>
|
6 |
+
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: Arial, sans-serif;
|
10 |
+
}
|
11 |
+
.equation {
|
12 |
+
display: block;
|
13 |
+
margin-left: auto;
|
14 |
+
margin-right: auto;
|
15 |
+
text-align: center;
|
16 |
+
margin-top: 1em;
|
17 |
+
margin-bottom: 1em;
|
18 |
+
}
|
19 |
+
.table-container {
|
20 |
+
display: flex;
|
21 |
+
justify-content: center;
|
22 |
+
margin-top: 1em;
|
23 |
+
margin-bottom: 1em;
|
24 |
+
}
|
25 |
+
.data-table {
|
26 |
+
border-collapse: collapse;
|
27 |
+
}
|
28 |
+
.data-table th, .data-table td {
|
29 |
+
border: 1px solid black;
|
30 |
+
padding: 8px;
|
31 |
+
text-align: center;
|
32 |
+
}
|
33 |
+
.boxed-answer {
|
34 |
+
border: 1px solid black;
|
35 |
+
padding: 10px;
|
36 |
+
display: inline-block;
|
37 |
+
margin-top: 1em;
|
38 |
+
}
|
39 |
+
ol li {
|
40 |
+
margin-bottom: 0.5em;
|
41 |
+
}
|
42 |
+
</style>
|
43 |
+
</head>
|
44 |
+
<body>
|
45 |
+
|
46 |
+
<p>Given the values:</p>
|
47 |
+
|
48 |
+
<div class="table-container">
|
49 |
+
<table class="data-table">
|
50 |
+
<thead>
|
51 |
+
<tr>
|
52 |
+
<th>\(x\)</th>
|
53 |
+
<th>\(f(x)\)</th>
|
54 |
+
</tr>
|
55 |
+
</thead>
|
56 |
+
<tbody>
|
57 |
+
<tr>
|
58 |
+
<td>5</td>
|
59 |
+
<td>150</td>
|
60 |
+
</tr>
|
61 |
+
<tr>
|
62 |
+
<td>7</td>
|
63 |
+
<td>392</td>
|
64 |
+
</tr>
|
65 |
+
<tr>
|
66 |
+
<td>11</td>
|
67 |
+
<td>1452</td>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td>13</td>
|
71 |
+
<td>2366</td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<td>17</td>
|
75 |
+
<td>5202</td>
|
76 |
+
</tr>
|
77 |
+
</tbody>
|
78 |
+
</table>
|
79 |
+
</div>
|
80 |
+
|
81 |
+
<p>We need to evaluate \( f(9) \) using Newton’s divided difference formula.</p>
|
82 |
+
|
83 |
+
<p>First, we compute the divided differences:</p>
|
84 |
+
|
85 |
+
<ol>
|
86 |
+
<li>
|
87 |
+
<p><b>First divided differences:</b></p>
|
88 |
+
<div class="equation">
|
89 |
+
\[
|
90 |
+
\begin{aligned}
|
91 |
+
f[5, 7] &= \frac{392 - 150}{7 - 5} = 121, \\
|
92 |
+
f[7, 11] &= \frac{1452 - 392}{11 - 7} = 265, \\
|
93 |
+
f[11, 13] &= \frac{2366 - 1452}{13 - 11} = 457, \\
|
94 |
+
f[13, 17] &= \frac{5202 - 2366}{17 - 13} = 709.
|
95 |
+
\end{aligned}
|
96 |
+
\]
|
97 |
+
</div>
|
98 |
+
</li>
|
99 |
+
<li>
|
100 |
+
<p><b>Second divided differences:</b></p>
|
101 |
+
<div class="equation">
|
102 |
+
\[
|
103 |
+
\begin{aligned}
|
104 |
+
f[5, 7, 11] &= \frac{265 - 121}{11 - 5} = 24, \\
|
105 |
+
f[7, 11, 13] &= \frac{457 - 265}{13 - 7} = 32, \\
|
106 |
+
f[11, 13, 17] &= \frac{709 - 457}{17 - 11} = 42.
|
107 |
+
\end{aligned}
|
108 |
+
\]
|
109 |
+
</div>
|
110 |
+
</li>
|
111 |
+
<li>
|
112 |
+
<p><b>Third divided differences:</b></p>
|
113 |
+
<div class="equation">
|
114 |
+
\[
|
115 |
+
\begin{aligned}
|
116 |
+
f[5, 7, 11, 13] &= \frac{32 - 24}{13 - 5} = 1, \\
|
117 |
+
f[7, 11, 13, 17] &= \frac{42 - 32}{17 - 7} = 1.
|
118 |
+
\end{aligned}
|
119 |
+
\]
|
120 |
+
</div>
|
121 |
+
</li>
|
122 |
+
<li>
|
123 |
+
<p><b>Fourth divided difference:</b></p>
|
124 |
+
<div class="equation">
|
125 |
+
\[
|
126 |
+
f[5, 7, 11, 13, 17] &= \frac{1 - 1}{17 - 5} = 0.
|
127 |
+
\]
|
128 |
+
</div>
|
129 |
+
</li>
|
130 |
+
</ol>
|
131 |
+
|
132 |
+
<p>Using these divided differences, the interpolating polynomial is constructed as:</p>
|
133 |
+
<div class="equation">
|
134 |
+
\[
|
135 |
+
P(x) = 150 + 121(x - 5) + 24(x - 5)(x - 7) + 1(x - 5)(x - 7)(x - 11)
|
136 |
+
\]
|
137 |
+
</div>
|
138 |
+
|
139 |
+
<p>Evaluating this polynomial at \( x = 9 \):</p>
|
140 |
+
<div class="equation">
|
141 |
+
\[
|
142 |
+
\begin{aligned}
|
143 |
+
P(9) &= 150 + 121(9 - 5) + 24(9 - 5)(9 - 7) + 1(9 - 5)(9 - 7)(9 - 11) \\
|
144 |
+
&= 150 + 121 \cdot 4 + 24 \cdot 4 \cdot 2 + 1 \cdot 4 \cdot 2 \cdot (-2) \\
|
145 |
+
&= 150 + 484 + 192 - 16 \\
|
146 |
+
&= 810.
|
147 |
+
\end{aligned}
|
148 |
+
\]
|
149 |
+
</div>
|
150 |
+
|
151 |
+
<p>Thus, the value of \( f(9) \) is:</p>
|
152 |
+
<div class="boxed-answer">
|
153 |
+
\[
|
154 |
+
\boxed{810}
|
155 |
+
\]
|
156 |
+
</div>
|
157 |
+
|
158 |
+
</body>
|
159 |
+
</html>
|