Given the values:

\(x\) \(f(x)\)
5 150
7 392
11 1452
13 2366
17 5202

We need to evaluate \( f(9) \) using Newton’s divided difference formula.

First, we compute the divided differences:

  1. First divided differences:

    \[ \begin{aligned} f[5, 7] &= \frac{392 - 150}{7 - 5} = 121, \\ f[7, 11] &= \frac{1452 - 392}{11 - 7} = 265, \\ f[11, 13] &= \frac{2366 - 1452}{13 - 11} = 457, \\ f[13, 17] &= \frac{5202 - 2366}{17 - 13} = 709. \end{aligned} \]
  2. Second divided differences:

    \[ \begin{aligned} f[5, 7, 11] &= \frac{265 - 121}{11 - 5} = 24, \\ f[7, 11, 13] &= \frac{457 - 265}{13 - 7} = 32, \\ f[11, 13, 17] &= \frac{709 - 457}{17 - 11} = 42. \end{aligned} \]
  3. Third divided differences:

    \[ \begin{aligned} f[5, 7, 11, 13] &= \frac{32 - 24}{13 - 5} = 1, \\ f[7, 11, 13, 17] &= \frac{42 - 32}{17 - 7} = 1. \end{aligned} \]
  4. Fourth divided difference:

    \[ f[5, 7, 11, 13, 17] &= \frac{1 - 1}{17 - 5} = 0. \]

Using these divided differences, the interpolating polynomial is constructed as:

\[ P(x) = 150 + 121(x - 5) + 24(x - 5)(x - 7) + 1(x - 5)(x - 7)(x - 11) \]

Evaluating this polynomial at \( x = 9 \):

\[ \begin{aligned} P(9) &= 150 + 121(9 - 5) + 24(9 - 5)(9 - 7) + 1(9 - 5)(9 - 7)(9 - 11) \\ &= 150 + 121 \cdot 4 + 24 \cdot 4 \cdot 2 + 1 \cdot 4 \cdot 2 \cdot (-2) \\ &= 150 + 484 + 192 - 16 \\ &= 810. \end{aligned} \]

Thus, the value of \( f(9) \) is:

\[ \boxed{810} \]