Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from generate_mindmap import generate_mindmap_svg
|
|
5 |
import gradio as gr
|
6 |
import subprocess
|
7 |
|
8 |
-
llm = load_llm_model()
|
9 |
|
10 |
def generate(file):
|
11 |
summary = "This is a summary of the research paper"
|
@@ -35,33 +34,25 @@ with gr.Blocks(theme=theme, title="Binary Biology") as app:
|
|
35 |
queue=True,
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
subprocess.run(cmd)
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
print("Graphviz installed successfully")
|
52 |
-
except:
|
53 |
-
subprocess.run(['sudo', 'apt', 'install', '-y', 'graphviz'])
|
54 |
-
print("Graphviz installed successfully")
|
55 |
except:
|
|
|
|
|
|
|
56 |
print("Graphviz installation failed")
|
57 |
sys.exit(1)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# summary, markdown_mindmap, graphical_mindmap = generate("cr1c00107.pdf")
|
63 |
-
# print(summary)
|
64 |
-
# print("\n\n")
|
65 |
-
# print(markdown_mindmap)
|
66 |
-
# print("\n\n")
|
67 |
-
# print(graphical_mindmap)
|
|
|
5 |
import gradio as gr
|
6 |
import subprocess
|
7 |
|
|
|
8 |
|
9 |
def generate(file):
|
10 |
summary = "This is a summary of the research paper"
|
|
|
34 |
queue=True,
|
35 |
)
|
36 |
|
37 |
+
try:
|
38 |
+
env = os.environ.copy()
|
39 |
+
env["CMAKE_ARGS"] = "-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS"
|
40 |
+
cmd = ["pip", "install", "llama-cpp-python"]
|
41 |
+
subprocess.run(cmd, env=env)
|
42 |
+
except:
|
43 |
+
cmd = ["pip", "install", "llama-cpp-python"]
|
44 |
+
subprocess.run(cmd)
|
45 |
+
try:
|
|
|
46 |
try:
|
47 |
+
subprocess.run(['apt', 'install', '-y', 'graphviz'])
|
48 |
+
print("Graphviz installed successfully")
|
|
|
|
|
|
|
|
|
49 |
except:
|
50 |
+
subprocess.run(['sudo', 'apt', 'install', '-y', 'graphviz'])
|
51 |
+
print("Graphviz installed successfully using sudo")
|
52 |
+
except:
|
53 |
print("Graphviz installation failed")
|
54 |
sys.exit(1)
|
55 |
+
print("Graphviz loaded successfully")
|
56 |
+
llm = load_llm_model()
|
57 |
+
print("Model loaded successfully")
|
58 |
+
app.queue(default_concurrency_limit=5).launch(show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|