import re import os import requests import base64 import dotenv import mistune dotenv.load_dotenv() api_endpoint = os.getenv('API_ENDPOINT') password = os.getenv('BLOG_PASSWORD') username = os.getenv('BLOG_USERNAME') def generate_post_html(title, summary, mindmap, citation): html_summary = mistune.html(summary) post = f"""

{html_summary.replace("&", "&")}



Mindmap



Citation

{mistune.html(citation.replace("&", "&"))}

""" return post def sanitize_citation(citation): pattern = r"(https://doi\.org/\S+)" sanitized_citation = re.sub( pattern, lambda match: f"[{match.group(1)}](https://doi.org/{match.group(1).split('/')[-1]})", citation ) return sanitized_citation def create_post(title, category, summary, mindmap, citation): post_title = f"{title}" post_category = f"{category}" post_body = generate_post_html(title, summary, mindmap, sanitize_citation(citation)) return post_title, post_category, post_body def create_category_if_not_exists(category_name, headers): categories_url = f"{api_endpoint}/categories" response = requests.get(categories_url, headers=headers) if response.status_code == 200: categories = response.json() for category in categories: if category['name'].lower() == category_name.lower(): return category['id'] create_response = requests.post( categories_url, headers=headers, json={"name": category_name} ) if create_response.status_code == 201: return create_response.json()['id'] else: print(f"Error creating category: {create_response.text}") return None def post_post(title, category, body): credentials = f"{username}:{password}" url = f"{api_endpoint}/posts" auth_key = base64.b64encode(credentials.encode('utf-8')).decode('utf-8') headers = { "Authorization": f"Basic {auth_key}" } category_ids = [] category_id = create_category_if_not_exists(category, headers) if category_id: category_ids.append(category_id) post_data = { "title": title, "status": "publish", "categories": category_ids, "content": body } response = requests.post(url, headers=headers, json=post_data) print(response.status_code) if response.status_code == 201: return True else: return False def main(title, category, summary, mindmap, citation, access_key): if access_key != os.getenv('ACCESS_KEY'): return False try: post_title, post_category, post_body = create_post(title, category, summary, mindmap, citation) status = post_post(post_title, post_category, post_body) if status: print('Post created successfully') return True else: print('Failed to create post') return False except Exception as e: print('An error occurred:', str(e)) return False if __name__ == '__main__': data = { "status": "success", "Astrophysics": { "2412.16344": { "id": "2412.16344", "doi": "https://doi.org/10.48550/arXiv.2412.16344", "title": "Focal Plane of the Arcus Probe X-Ray Spectrograph", "category": "Astrophysics", "citation": "Grant, C. E., Bautz, M. W., Miller, E. D., Foster, R. F., LaMarr, B., Malonis, A., Prigozhin, G., Schneider, B., Leitz, C., & Falcone, A. D. (2024). Focal Plane of the Arcus Probe X-Ray Spectrograph. ArXiv. https://doi.org/10.48550/ARXIV.2412.16344", "summary": "## Summary\nThe Arcus Probe mission concept provides high-resolution soft X-ray and UV spectroscopy to study the universe. The X-ray Spectrograph (XRS) uses two CCD focal planes to detect and record X-ray photons. Laboratory performance results meet observatory requirements.\n\n## Highlights\n- The Arcus Probe mission concept explores the formation and evolution of clusters, galaxies, and stars.\n- The XRS instrument includes four parallel optical channels and two detector focal plane arrays.\n- The CCDs are designed and manufactured by MIT Lincoln Laboratory (MIT/LL).\n- The XRS focal plane utilizes high heritage MIT/LL CCDs with proven technologies.\n- Laboratory testing confirms CCID-94 performance meets required spectral resolution and readout noise.\n- The Arcus mission includes two co-aligned instruments working simultaneously.\n- The XRS Instrument Control Unit (XICU) controls the activities of the XRS.\n\n## Key Insights\n- The Arcus Probe mission concept provides a significant improvement in sensitivity and resolution over previous missions, enabling breakthrough science in understanding the universe.\n- The XRS instrument's design, including the use of two CCD focal planes and four parallel optical channels, allows for high-resolution spectroscopy and efficient detection of X-ray photons.\n- The CCDs used in the XRS instrument are designed and manufactured by MIT Lincoln Laboratory (MIT/LL), which has a proven track record of producing high-quality CCDs for space missions.\n- The laboratory performance results of the CCID-94 device demonstrate that it meets the required spectral resolution and readout noise for the Arcus mission, indicating that the instrument is capable of achieving its scientific goals.\n- The XRS Instrument Control Unit (XICU) plays a crucial role in controlling the activities of the XRS, including gathering and storing data, and processing event recognition.\n- The Arcus mission's use of two co-aligned instruments working simultaneously allows for a wide range of scientific investigations, including the study of time-domain science and the physics of time-dependent phenomena.\n- The high heritage MIT/LL CCDs used in the XRS focal plane provide a reliable and efficient means of detecting X-ray photons, enabling the instrument to achieve its scientific goals.", "mindmap": "## Arcus Probe Mission Concept\n- Explores formation and evolution of clusters, galaxies, stars\n- High-resolution soft X-ray and UV spectroscopy\n- Agile response capability for time-domain science\n\n## X-Ray Spectrograph (XRS) Instrument\n- Two nearly identical CCD focal planes\n- Detects and records X-ray photons from dispersed spectra\n- Zero-order of critical angle transmission gratings\n\n## XRS Focal Plane Characteristics\n- Frametransfer X-ray CCDs\n- 8-CCD array per Detector Assembly\n- FWHM < 70 eV @ 0.5 keV\n- System read noise ≤ 4 e- RMS @ 625 kpixels/sec\n\n## Detector Assembly\n- Eight CCDs in a linear array\n- Tilted to match curved focal surface\n- Gaps minimized between CCDs\n- Alignment optimized with XRS optics\n\n## Detector Electronics\n- Programmable analog clock waveforms and biases\n- Low-noise analog signal processing and digitization\n- 1 second frame time for negligible pileup\n\n## XRS Instrument Control Unit (XICU)\n- Controls XRS activities and data transfer\n- Event Recognition Processor (ERP) extracts X-ray events\n- Reduces data rate by many orders of magnitude\n\n## CCD X-Ray Performance\n- Measured readout noise 2-3 e- RMS\n- Spectral resolution meets Arcus requirements\n- FWHM < 70 eV at 0.5 keV\n\n## CCID-94 Characteristics\n- Back-illuminated frame-transfer CCDs\n- 2048 × 1024 pixel imaging array\n- 24 × 24 µm image area pixel size\n- 50 µm detector thickness\n\n## Contamination Blocking Filter (CBF)\n- Protects detectors from molecular contamination\n- 45 nm polyimide + 30 nm Al\n- Maintained above +20°C by heater control\n\n## Optical Blocking Filter (OBF)\n- Attenuates visible/IR stray light\n- 40 nm Al on-chip filter\n- Works in conjunction with CBF" } } } if data['status'] != 'success': print('Failed to fetch data') else: for category, catdata in data.items(): if category != 'status': for paper_id, paperdata in catdata.items(): title = paperdata['title'] category = paperdata['category'] summary = paperdata['summary'] mindmap = paperdata['mindmap'] citation = paperdata['citation'] access_key = os.getenv('ACCESS_KEY') main(title, category, summary, mindmap, citation, access_key)