Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,29 +3,31 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaConfig
|
|
3 |
import torch
|
4 |
from peft import PeftModel
|
5 |
|
6 |
-
#
|
7 |
base_model_name = "unsloth/meta-llama-3.1-8b-bnb-4bit"
|
|
|
|
|
8 |
config = LlamaConfig.from_pretrained(base_model_name)
|
9 |
|
10 |
-
#
|
11 |
if hasattr(config, 'rope_scaling'):
|
12 |
config.rope_scaling = {
|
13 |
'type': 'linear',
|
14 |
'factor': 8.0
|
15 |
}
|
16 |
|
17 |
-
#
|
18 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
19 |
|
20 |
-
# Ensure
|
21 |
base_model = AutoModelForCausalLM.from_pretrained(
|
22 |
base_model_name,
|
23 |
config=config,
|
24 |
torch_dtype=torch.float32, # Use full precision
|
25 |
-
device_map={"": "cpu"} # Ensure
|
26 |
)
|
27 |
|
28 |
-
#
|
29 |
adapter_model = PeftModel.from_pretrained(base_model, "raccoote/angry-birds-v2")
|
30 |
|
31 |
def generate_text(prompt):
|
@@ -33,7 +35,7 @@ def generate_text(prompt):
|
|
33 |
outputs = adapter_model.generate(**inputs, max_new_tokens=50)
|
34 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
|
36 |
-
#
|
37 |
iface = gr.Interface(fn=generate_text,
|
38 |
inputs="text",
|
39 |
outputs="text",
|
|
|
3 |
import torch
|
4 |
from peft import PeftModel
|
5 |
|
6 |
+
# Define the base model and configuration
|
7 |
base_model_name = "unsloth/meta-llama-3.1-8b-bnb-4bit"
|
8 |
+
|
9 |
+
# Load the configuration
|
10 |
config = LlamaConfig.from_pretrained(base_model_name)
|
11 |
|
12 |
+
# Simplify or adjust the configuration if necessary
|
13 |
if hasattr(config, 'rope_scaling'):
|
14 |
config.rope_scaling = {
|
15 |
'type': 'linear',
|
16 |
'factor': 8.0
|
17 |
}
|
18 |
|
19 |
+
# Load the tokenizer and base model without quantization settings
|
20 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
21 |
|
22 |
+
# Ensure the model is loaded without quantization settings
|
23 |
base_model = AutoModelForCausalLM.from_pretrained(
|
24 |
base_model_name,
|
25 |
config=config,
|
26 |
torch_dtype=torch.float32, # Use full precision
|
27 |
+
device_map={"": "cpu"} # Ensure model is loaded on CPU
|
28 |
)
|
29 |
|
30 |
+
# Load the LoRA adapter from the repository
|
31 |
adapter_model = PeftModel.from_pretrained(base_model, "raccoote/angry-birds-v2")
|
32 |
|
33 |
def generate_text(prompt):
|
|
|
35 |
outputs = adapter_model.generate(**inputs, max_new_tokens=50)
|
36 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
|
38 |
+
# Create the Gradio interface
|
39 |
iface = gr.Interface(fn=generate_text,
|
40 |
inputs="text",
|
41 |
outputs="text",
|