File size: 6,297 Bytes
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import division, absolute_import
import torch
from torch import nn
from torch.nn import functional as F

__all__ = ['MuDeep']


class ConvBlock(nn.Module):
    """Basic convolutional block.
    
    convolution + batch normalization + relu.

    Args:
        in_c (int): number of input channels.
        out_c (int): number of output channels.
        k (int or tuple): kernel size.
        s (int or tuple): stride.
        p (int or tuple): padding.
    """

    def __init__(self, in_c, out_c, k, s, p):
        super(ConvBlock, self).__init__()
        self.conv = nn.Conv2d(in_c, out_c, k, stride=s, padding=p)
        self.bn = nn.BatchNorm2d(out_c)

    def forward(self, x):
        return F.relu(self.bn(self.conv(x)))


class ConvLayers(nn.Module):
    """Preprocessing layers."""

    def __init__(self):
        super(ConvLayers, self).__init__()
        self.conv1 = ConvBlock(3, 48, k=3, s=1, p=1)
        self.conv2 = ConvBlock(48, 96, k=3, s=1, p=1)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.maxpool(x)
        return x


class MultiScaleA(nn.Module):
    """Multi-scale stream layer A (Sec.3.1)"""

    def __init__(self):
        super(MultiScaleA, self).__init__()
        self.stream1 = nn.Sequential(
            ConvBlock(96, 96, k=1, s=1, p=0),
            ConvBlock(96, 24, k=3, s=1, p=1),
        )
        self.stream2 = nn.Sequential(
            nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
            ConvBlock(96, 24, k=1, s=1, p=0),
        )
        self.stream3 = ConvBlock(96, 24, k=1, s=1, p=0)
        self.stream4 = nn.Sequential(
            ConvBlock(96, 16, k=1, s=1, p=0),
            ConvBlock(16, 24, k=3, s=1, p=1),
            ConvBlock(24, 24, k=3, s=1, p=1),
        )

    def forward(self, x):
        s1 = self.stream1(x)
        s2 = self.stream2(x)
        s3 = self.stream3(x)
        s4 = self.stream4(x)
        y = torch.cat([s1, s2, s3, s4], dim=1)
        return y


class Reduction(nn.Module):
    """Reduction layer (Sec.3.1)"""

    def __init__(self):
        super(Reduction, self).__init__()
        self.stream1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.stream2 = ConvBlock(96, 96, k=3, s=2, p=1)
        self.stream3 = nn.Sequential(
            ConvBlock(96, 48, k=1, s=1, p=0),
            ConvBlock(48, 56, k=3, s=1, p=1),
            ConvBlock(56, 64, k=3, s=2, p=1),
        )

    def forward(self, x):
        s1 = self.stream1(x)
        s2 = self.stream2(x)
        s3 = self.stream3(x)
        y = torch.cat([s1, s2, s3], dim=1)
        return y


class MultiScaleB(nn.Module):
    """Multi-scale stream layer B (Sec.3.1)"""

    def __init__(self):
        super(MultiScaleB, self).__init__()
        self.stream1 = nn.Sequential(
            nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
            ConvBlock(256, 256, k=1, s=1, p=0),
        )
        self.stream2 = nn.Sequential(
            ConvBlock(256, 64, k=1, s=1, p=0),
            ConvBlock(64, 128, k=(1, 3), s=1, p=(0, 1)),
            ConvBlock(128, 256, k=(3, 1), s=1, p=(1, 0)),
        )
        self.stream3 = ConvBlock(256, 256, k=1, s=1, p=0)
        self.stream4 = nn.Sequential(
            ConvBlock(256, 64, k=1, s=1, p=0),
            ConvBlock(64, 64, k=(1, 3), s=1, p=(0, 1)),
            ConvBlock(64, 128, k=(3, 1), s=1, p=(1, 0)),
            ConvBlock(128, 128, k=(1, 3), s=1, p=(0, 1)),
            ConvBlock(128, 256, k=(3, 1), s=1, p=(1, 0)),
        )

    def forward(self, x):
        s1 = self.stream1(x)
        s2 = self.stream2(x)
        s3 = self.stream3(x)
        s4 = self.stream4(x)
        return s1, s2, s3, s4


class Fusion(nn.Module):
    """Saliency-based learning fusion layer (Sec.3.2)"""

    def __init__(self):
        super(Fusion, self).__init__()
        self.a1 = nn.Parameter(torch.rand(1, 256, 1, 1))
        self.a2 = nn.Parameter(torch.rand(1, 256, 1, 1))
        self.a3 = nn.Parameter(torch.rand(1, 256, 1, 1))
        self.a4 = nn.Parameter(torch.rand(1, 256, 1, 1))

        # We add an average pooling layer to reduce the spatial dimension
        # of feature maps, which differs from the original paper.
        self.avgpool = nn.AvgPool2d(kernel_size=4, stride=4, padding=0)

    def forward(self, x1, x2, x3, x4):
        s1 = self.a1.expand_as(x1) * x1
        s2 = self.a2.expand_as(x2) * x2
        s3 = self.a3.expand_as(x3) * x3
        s4 = self.a4.expand_as(x4) * x4
        y = self.avgpool(s1 + s2 + s3 + s4)
        return y


class MuDeep(nn.Module):
    """Multiscale deep neural network.

    Reference:
        Qian et al. Multi-scale Deep Learning Architectures
        for Person Re-identification. ICCV 2017.

    Public keys:
        - ``mudeep``: Multiscale deep neural network.
    """

    def __init__(self, num_classes, loss='softmax', **kwargs):
        super(MuDeep, self).__init__()
        self.loss = loss

        self.block1 = ConvLayers()
        self.block2 = MultiScaleA()
        self.block3 = Reduction()
        self.block4 = MultiScaleB()
        self.block5 = Fusion()

        # Due to this fully connected layer, input image has to be fixed
        # in shape, i.e. (3, 256, 128), such that the last convolutional feature
        # maps are of shape (256, 16, 8). If input shape is changed,
        # the input dimension of this layer has to be changed accordingly.
        self.fc = nn.Sequential(
            nn.Linear(256 * 16 * 8, 4096),
            nn.BatchNorm1d(4096),
            nn.ReLU(),
        )
        self.classifier = nn.Linear(4096, num_classes)
        self.feat_dim = 4096

    def featuremaps(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(*x)
        return x

    def forward(self, x):
        x = self.featuremaps(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        y = self.classifier(x)

        if not self.training:
            return x

        if self.loss == 'softmax':
            return y
        elif self.loss == 'triplet':
            return y, x
        else:
            raise KeyError('Unsupported loss: {}'.format(self.loss))