Spaces:
Runtime error
Runtime error
File size: 9,125 Bytes
ac6e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from __future__ import division, absolute_import
import torch.utils.model_zoo as model_zoo
from torch import nn
from torch.nn import functional as F
__all__ = ['pcb_p6', 'pcb_p4']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, planes * self.expansion, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class DimReduceLayer(nn.Module):
def __init__(self, in_channels, out_channels, nonlinear):
super(DimReduceLayer, self).__init__()
layers = []
layers.append(
nn.Conv2d(
in_channels, out_channels, 1, stride=1, padding=0, bias=False
)
)
layers.append(nn.BatchNorm2d(out_channels))
if nonlinear == 'relu':
layers.append(nn.ReLU(inplace=True))
elif nonlinear == 'leakyrelu':
layers.append(nn.LeakyReLU(0.1))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class PCB(nn.Module):
"""Part-based Convolutional Baseline.
Reference:
Sun et al. Beyond Part Models: Person Retrieval with Refined
Part Pooling (and A Strong Convolutional Baseline). ECCV 2018.
Public keys:
- ``pcb_p4``: PCB with 4-part strips.
- ``pcb_p6``: PCB with 6-part strips.
"""
def __init__(
self,
num_classes,
loss,
block,
layers,
parts=6,
reduced_dim=256,
nonlinear='relu',
**kwargs
):
self.inplanes = 64
super(PCB, self).__init__()
self.loss = loss
self.parts = parts
self.feature_dim = 512 * block.expansion
# backbone network
self.conv1 = nn.Conv2d(
3, 64, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
# pcb layers
self.parts_avgpool = nn.AdaptiveAvgPool2d((self.parts, 1))
self.dropout = nn.Dropout(p=0.5)
self.conv5 = DimReduceLayer(
512 * block.expansion, reduced_dim, nonlinear=nonlinear
)
self.feature_dim = reduced_dim
self.classifier = nn.ModuleList(
[
nn.Linear(self.feature_dim, num_classes)
for _ in range(self.parts)
]
)
self._init_params()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu'
)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v_g = self.parts_avgpool(f)
if not self.training:
v_g = F.normalize(v_g, p=2, dim=1)
return v_g.view(v_g.size(0), -1)
v_g = self.dropout(v_g)
v_h = self.conv5(v_g)
y = []
for i in range(self.parts):
v_h_i = v_h[:, :, i, :]
v_h_i = v_h_i.view(v_h_i.size(0), -1)
y_i = self.classifier[i](v_h_i)
y.append(y_i)
if self.loss == 'softmax':
return y
elif self.loss == 'triplet':
v_g = F.normalize(v_g, p=2, dim=1)
return y, v_g.view(v_g.size(0), -1)
else:
raise KeyError('Unsupported loss: {}'.format(self.loss))
def init_pretrained_weights(model, model_url):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
def pcb_p6(num_classes, loss='softmax', pretrained=True, **kwargs):
model = PCB(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=1,
parts=6,
reduced_dim=256,
nonlinear='relu',
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet50'])
return model
def pcb_p4(num_classes, loss='softmax', pretrained=True, **kwargs):
model = PCB(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=1,
parts=4,
reduced_dim=256,
nonlinear='relu',
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['resnet50'])
return model
|