Spaces:
Runtime error
Runtime error
File size: 20,684 Bytes
ac6e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
from __future__ import division, absolute_import
import math
from collections import OrderedDict
import torch.nn as nn
from torch.utils import model_zoo
__all__ = [
'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152',
'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnet50_fc512'
]
"""
Code imported from https://github.com/Cadene/pretrained-models.pytorch
"""
pretrained_settings = {
'senet154': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
'se_resnet50': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
'se_resnet101': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
'se_resnet152': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
'se_resnext50_32x4d': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
'se_resnext101_32x4d': {
'imagenet': {
'url':
'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth',
'input_space': 'RGB',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
},
}
class SEModule(nn.Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(
channels, channels // reduction, kernel_size=1, padding=0
)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(
channels // reduction, channels, kernel_size=1, padding=0
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class Bottleneck(nn.Module):
"""
Base class for bottlenecks that implements `forward()` method.
"""
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = self.se_module(out) + residual
out = self.relu(out)
return out
class SEBottleneck(Bottleneck):
"""
Bottleneck for SENet154.
"""
expansion = 4
def __init__(
self, inplanes, planes, groups, reduction, stride=1, downsample=None
):
super(SEBottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes * 2)
self.conv2 = nn.Conv2d(
planes * 2,
planes * 4,
kernel_size=3,
stride=stride,
padding=1,
groups=groups,
bias=False
)
self.bn2 = nn.BatchNorm2d(planes * 4)
self.conv3 = nn.Conv2d(
planes * 4, planes * 4, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNetBottleneck(Bottleneck):
"""
ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe
implementation and uses `stride=stride` in `conv1` and not in `conv2`
(the latter is used in the torchvision implementation of ResNet).
"""
expansion = 4
def __init__(
self, inplanes, planes, groups, reduction, stride=1, downsample=None
):
super(SEResNetBottleneck, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=1, bias=False, stride=stride
)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes,
planes,
kernel_size=3,
padding=1,
groups=groups,
bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SEResNeXtBottleneck(Bottleneck):
"""ResNeXt bottleneck type C with a Squeeze-and-Excitation module"""
expansion = 4
def __init__(
self,
inplanes,
planes,
groups,
reduction,
stride=1,
downsample=None,
base_width=4
):
super(SEResNeXtBottleneck, self).__init__()
width = int(math.floor(planes * (base_width/64.)) * groups)
self.conv1 = nn.Conv2d(
inplanes, width, kernel_size=1, bias=False, stride=1
)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(
width,
width,
kernel_size=3,
stride=stride,
padding=1,
groups=groups,
bias=False
)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.se_module = SEModule(planes * 4, reduction=reduction)
self.downsample = downsample
self.stride = stride
class SENet(nn.Module):
"""Squeeze-and-excitation network.
Reference:
Hu et al. Squeeze-and-Excitation Networks. CVPR 2018.
Public keys:
- ``senet154``: SENet154.
- ``se_resnet50``: ResNet50 + SE.
- ``se_resnet101``: ResNet101 + SE.
- ``se_resnet152``: ResNet152 + SE.
- ``se_resnext50_32x4d``: ResNeXt50 (groups=32, width=4) + SE.
- ``se_resnext101_32x4d``: ResNeXt101 (groups=32, width=4) + SE.
- ``se_resnet50_fc512``: (ResNet50 + SE) + FC.
"""
def __init__(
self,
num_classes,
loss,
block,
layers,
groups,
reduction,
dropout_p=0.2,
inplanes=128,
input_3x3=True,
downsample_kernel_size=3,
downsample_padding=1,
last_stride=2,
fc_dims=None,
**kwargs
):
"""
Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `classifier` layer.
"""
super(SENet, self).__init__()
self.inplanes = inplanes
self.loss = loss
if input_3x3:
layer0_modules = [
(
'conv1',
nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)
),
('bn1', nn.BatchNorm2d(64)),
('relu1', nn.ReLU(inplace=True)),
(
'conv2',
nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)
),
('bn2', nn.BatchNorm2d(64)),
('relu2', nn.ReLU(inplace=True)),
(
'conv3',
nn.Conv2d(
64, inplanes, 3, stride=1, padding=1, bias=False
)
),
('bn3', nn.BatchNorm2d(inplanes)),
('relu3', nn.ReLU(inplace=True)),
]
else:
layer0_modules = [
(
'conv1',
nn.Conv2d(
3,
inplanes,
kernel_size=7,
stride=2,
padding=3,
bias=False
)
),
('bn1', nn.BatchNorm2d(inplanes)),
('relu1', nn.ReLU(inplace=True)),
]
# To preserve compatibility with Caffe weights `ceil_mode=True`
# is used instead of `padding=1`.
layer0_modules.append(
('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))
)
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
self.layer1 = self._make_layer(
block,
planes=64,
blocks=layers[0],
groups=groups,
reduction=reduction,
downsample_kernel_size=1,
downsample_padding=0
)
self.layer2 = self._make_layer(
block,
planes=128,
blocks=layers[1],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer3 = self._make_layer(
block,
planes=256,
blocks=layers[2],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer4 = self._make_layer(
block,
planes=512,
blocks=layers[3],
stride=last_stride,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = self._construct_fc_layer(
fc_dims, 512 * block.expansion, dropout_p
)
self.classifier = nn.Linear(self.feature_dim, num_classes)
def _make_layer(
self,
block,
planes,
blocks,
groups,
reduction,
stride=1,
downsample_kernel_size=1,
downsample_padding=0
):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=downsample_kernel_size,
stride=stride,
padding=downsample_padding,
bias=False
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, groups, reduction, stride, downsample
)
)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, groups, reduction))
return nn.Sequential(*layers)
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
"""
Construct fully connected layer
- fc_dims (list or tuple): dimensions of fc layers, if None,
no fc layers are constructed
- input_dim (int): input dimension
- dropout_p (float): dropout probability, if None, dropout is unused
"""
if fc_dims is None:
self.feature_dim = input_dim
return None
assert isinstance(
fc_dims, (list, tuple)
), 'fc_dims must be either list or tuple, but got {}'.format(
type(fc_dims)
)
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def featuremaps(self, x):
x = self.layer0(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
y = self.classifier(v)
if self.loss == 'softmax':
return y
elif self.loss == 'triplet':
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
def senet154(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEBottleneck,
layers=[3, 8, 36, 3],
groups=64,
reduction=16,
dropout_p=0.2,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['senet154']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
def se_resnet50(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNetBottleneck,
layers=[3, 4, 6, 3],
groups=1,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnet50']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
def se_resnet50_fc512(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNetBottleneck,
layers=[3, 4, 6, 3],
groups=1,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=1,
fc_dims=[512],
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnet50']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
def se_resnet101(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNetBottleneck,
layers=[3, 4, 23, 3],
groups=1,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnet101']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
def se_resnet152(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNetBottleneck,
layers=[3, 8, 36, 3],
groups=1,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnet152']['imagenet']['url']
init_pretrained_weights(model, model_url)
return model
def se_resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNeXtBottleneck,
layers=[3, 4, 6, 3],
groups=32,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnext50_32x4d']['imagenet']['url'
]
init_pretrained_weights(model, model_url)
return model
def se_resnext101_32x4d(
num_classes, loss='softmax', pretrained=True, **kwargs
):
model = SENet(
num_classes=num_classes,
loss=loss,
block=SEResNeXtBottleneck,
layers=[3, 4, 23, 3],
groups=32,
reduction=16,
dropout_p=None,
inplanes=64,
input_3x3=False,
downsample_kernel_size=1,
downsample_padding=0,
last_stride=2,
fc_dims=None,
**kwargs
)
if pretrained:
model_url = pretrained_settings['se_resnext101_32x4d']['imagenet'][
'url']
init_pretrained_weights(model, model_url)
return model
|