Spaces:
Runtime error
Runtime error
File size: 8,011 Bytes
ac6e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""
Code source: https://github.com/pytorch/vision
"""
from __future__ import division, absolute_import
import torch
import torch.utils.model_zoo as model_zoo
from torch import nn
__all__ = [
'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5',
'shufflenet_v2_x2_0'
]
model_urls = {
'shufflenetv2_x0.5':
'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
'shufflenetv2_x1.0':
'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
'shufflenetv2_x1.5': None,
'shufflenetv2_x2.0': None,
}
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride):
super(InvertedResidual, self).__init__()
if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride
branch_features = oup // 2
assert (self.stride != 1) or (inp == branch_features << 1)
if self.stride > 1:
self.branch1 = nn.Sequential(
self.depthwise_conv(
inp, inp, kernel_size=3, stride=self.stride, padding=1
),
nn.BatchNorm2d(inp),
nn.Conv2d(
inp,
branch_features,
kernel_size=1,
stride=1,
padding=0,
bias=False
),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
self.branch2 = nn.Sequential(
nn.Conv2d(
inp if (self.stride > 1) else branch_features,
branch_features,
kernel_size=1,
stride=1,
padding=0,
bias=False
),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
self.depthwise_conv(
branch_features,
branch_features,
kernel_size=3,
stride=self.stride,
padding=1
),
nn.BatchNorm2d(branch_features),
nn.Conv2d(
branch_features,
branch_features,
kernel_size=1,
stride=1,
padding=0,
bias=False
),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
@staticmethod
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
return nn.Conv2d(
i, o, kernel_size, stride, padding, bias=bias, groups=i
)
def forward(self, x):
if self.stride == 1:
x1, x2 = x.chunk(2, dim=1)
out = torch.cat((x1, self.branch2(x2)), dim=1)
else:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
out = channel_shuffle(out, 2)
return out
class ShuffleNetV2(nn.Module):
"""ShuffleNetV2.
Reference:
Ma et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.
Public keys:
- ``shufflenet_v2_x0_5``: ShuffleNetV2 x0.5.
- ``shufflenet_v2_x1_0``: ShuffleNetV2 x1.0.
- ``shufflenet_v2_x1_5``: ShuffleNetV2 x1.5.
- ``shufflenet_v2_x2_0``: ShuffleNetV2 x2.0.
"""
def __init__(
self, num_classes, loss, stages_repeats, stages_out_channels, **kwargs
):
super(ShuffleNetV2, self).__init__()
self.loss = loss
if len(stages_repeats) != 3:
raise ValueError(
'expected stages_repeats as list of 3 positive ints'
)
if len(stages_out_channels) != 5:
raise ValueError(
'expected stages_out_channels as list of 5 positive ints'
)
self._stage_out_channels = stages_out_channels
input_channels = 3
output_channels = self._stage_out_channels[0]
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
input_channels = output_channels
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
for name, repeats, output_channels in zip(
stage_names, stages_repeats, self._stage_out_channels[1:]
):
seq = [InvertedResidual(input_channels, output_channels, 2)]
for i in range(repeats - 1):
seq.append(
InvertedResidual(output_channels, output_channels, 1)
)
setattr(self, name, nn.Sequential(*seq))
input_channels = output_channels
output_channels = self._stage_out_channels[-1]
self.conv5 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(output_channels, num_classes)
def featuremaps(self, x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if not self.training:
return v
y = self.classifier(v)
if self.loss == 'softmax':
return y
elif self.loss == 'triplet':
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
if model_url is None:
import warnings
warnings.warn(
'ImageNet pretrained weights are unavailable for this model'
)
return
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {
k: v
for k, v in pretrain_dict.items()
if k in model_dict and model_dict[k].size() == v.size()
}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
def shufflenet_v2_x0_5(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ShuffleNetV2(
num_classes, loss, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['shufflenetv2_x0.5'])
return model
def shufflenet_v2_x1_0(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ShuffleNetV2(
num_classes, loss, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['shufflenetv2_x1.0'])
return model
def shufflenet_v2_x1_5(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ShuffleNetV2(
num_classes, loss, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['shufflenetv2_x1.5'])
return model
def shufflenet_v2_x2_0(num_classes, loss='softmax', pretrained=True, **kwargs):
model = ShuffleNetV2(
num_classes, loss, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['shufflenetv2_x2.0'])
return model
|