File size: 8,011 Bytes
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Code source: https://github.com/pytorch/vision
"""
from __future__ import division, absolute_import
import torch
import torch.utils.model_zoo as model_zoo
from torch import nn

__all__ = [
    'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5',
    'shufflenet_v2_x2_0'
]

model_urls = {
    'shufflenetv2_x0.5':
    'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
    'shufflenetv2_x1.0':
    'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
    'shufflenetv2_x1.5': None,
    'shufflenetv2_x2.0': None,
}


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups, channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):

    def __init__(self, inp, oup, stride):
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                self.depthwise_conv(
                    inp, inp, kernel_size=3, stride=self.stride, padding=1
                ),
                nn.BatchNorm2d(inp),
                nn.Conv2d(
                    inp,
                    branch_features,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                    bias=False
                ),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            nn.Conv2d(
                inp if (self.stride > 1) else branch_features,
                branch_features,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=False
            ),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            self.depthwise_conv(
                branch_features,
                branch_features,
                kernel_size=3,
                stride=self.stride,
                padding=1
            ),
            nn.BatchNorm2d(branch_features),
            nn.Conv2d(
                branch_features,
                branch_features,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=False
            ),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(
            i, o, kernel_size, stride, padding, bias=bias, groups=i
        )

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
    """ShuffleNetV2.
    
    Reference:
        Ma et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.

    Public keys:
        - ``shufflenet_v2_x0_5``: ShuffleNetV2 x0.5.
        - ``shufflenet_v2_x1_0``: ShuffleNetV2 x1.0.
        - ``shufflenet_v2_x1_5``: ShuffleNetV2 x1.5.
        - ``shufflenet_v2_x2_0``: ShuffleNetV2 x2.0.
    """

    def __init__(
        self, num_classes, loss, stages_repeats, stages_out_channels, **kwargs
    ):
        super(ShuffleNetV2, self).__init__()
        self.loss = loss

        if len(stages_repeats) != 3:
            raise ValueError(
                'expected stages_repeats as list of 3 positive ints'
            )
        if len(stages_out_channels) != 5:
            raise ValueError(
                'expected stages_out_channels as list of 5 positive ints'
            )
        self._stage_out_channels = stages_out_channels

        input_channels = 3
        output_channels = self._stage_out_channels[0]
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
        for name, repeats, output_channels in zip(
            stage_names, stages_repeats, self._stage_out_channels[1:]
        ):
            seq = [InvertedResidual(input_channels, output_channels, 2)]
            for i in range(repeats - 1):
                seq.append(
                    InvertedResidual(output_channels, output_channels, 1)
                )
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

        output_channels = self._stage_out_channels[-1]
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))

        self.classifier = nn.Linear(output_channels, num_classes)

    def featuremaps(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        return x

    def forward(self, x):
        f = self.featuremaps(x)
        v = self.global_avgpool(f)
        v = v.view(v.size(0), -1)

        if not self.training:
            return v

        y = self.classifier(v)

        if self.loss == 'softmax':
            return y
        elif self.loss == 'triplet':
            return y, v
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))


def init_pretrained_weights(model, model_url):
    """Initializes model with pretrained weights.
    
    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    if model_url is None:
        import warnings
        warnings.warn(
            'ImageNet pretrained weights are unavailable for this model'
        )
        return
    pretrain_dict = model_zoo.load_url(model_url)
    model_dict = model.state_dict()
    pretrain_dict = {
        k: v
        for k, v in pretrain_dict.items()
        if k in model_dict and model_dict[k].size() == v.size()
    }
    model_dict.update(pretrain_dict)
    model.load_state_dict(model_dict)


def shufflenet_v2_x0_5(num_classes, loss='softmax', pretrained=True, **kwargs):
    model = ShuffleNetV2(
        num_classes, loss, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, model_urls['shufflenetv2_x0.5'])
    return model


def shufflenet_v2_x1_0(num_classes, loss='softmax', pretrained=True, **kwargs):
    model = ShuffleNetV2(
        num_classes, loss, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, model_urls['shufflenetv2_x1.0'])
    return model


def shufflenet_v2_x1_5(num_classes, loss='softmax', pretrained=True, **kwargs):
    model = ShuffleNetV2(
        num_classes, loss, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, model_urls['shufflenetv2_x1.5'])
    return model


def shufflenet_v2_x2_0(num_classes, loss='softmax', pretrained=True, **kwargs):
    model = ShuffleNetV2(
        num_classes, loss, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs
    )
    if pretrained:
        init_pretrained_weights(model, model_urls['shufflenetv2_x2.0'])
    return model