File size: 1,987 Bytes
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# vim: expandtab:ts=4:sw=4
import numpy as np
import cv2


def non_max_suppression(boxes, max_bbox_overlap, scores=None):
    """Suppress overlapping detections.



    Original code from [1]_ has been adapted to include confidence score.



    .. [1] http://www.pyimagesearch.com/2015/02/16/

           faster-non-maximum-suppression-python/



    Examples

    --------



        >>> boxes = [d.roi for d in detections]

        >>> scores = [d.confidence for d in detections]

        >>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)

        >>> detections = [detections[i] for i in indices]



    Parameters

    ----------

    boxes : ndarray

        Array of ROIs (x, y, width, height).

    max_bbox_overlap : float

        ROIs that overlap more than this values are suppressed.

    scores : Optional[array_like]

        Detector confidence score.



    Returns

    -------

    List[int]

        Returns indices of detections that have survived non-maxima suppression.



    """
    if len(boxes) == 0:
        return []

    boxes = boxes.astype(np.float)
    pick = []

    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2] + boxes[:, 0]
    y2 = boxes[:, 3] + boxes[:, 1]

    area = (x2 - x1 + 1) * (y2 - y1 + 1)
    if scores is not None:
        idxs = np.argsort(scores)
    else:
        idxs = np.argsort(y2)

    while len(idxs) > 0:
        last = len(idxs) - 1
        i = idxs[last]
        pick.append(i)

        xx1 = np.maximum(x1[i], x1[idxs[:last]])
        yy1 = np.maximum(y1[i], y1[idxs[:last]])
        xx2 = np.minimum(x2[i], x2[idxs[:last]])
        yy2 = np.minimum(y2[i], y2[idxs[:last]])

        w = np.maximum(0, xx2 - xx1 + 1)
        h = np.maximum(0, yy2 - yy1 + 1)

        overlap = (w * h) / area[idxs[:last]]

        idxs = np.delete(
            idxs, np.concatenate(
                ([last], np.where(overlap > max_bbox_overlap)[0])))

    return pick