File size: 11,473 Bytes
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# vim: expandtab:ts=4:sw=4
import cv2
import numpy as np
from trackers.strongsort.sort.kalman_filter import KalmanFilter
from collections import deque


class TrackState:
    """

    Enumeration type for the single target track state. Newly created tracks are

    classified as `tentative` until enough evidence has been collected. Then,

    the track state is changed to `confirmed`. Tracks that are no longer alive

    are classified as `deleted` to mark them for removal from the set of active

    tracks.



    """

    Tentative = 1
    Confirmed = 2
    Deleted = 3


class Track:
    """

    A single target track with state space `(x, y, a, h)` and associated

    velocities, where `(x, y)` is the center of the bounding box, `a` is the

    aspect ratio and `h` is the height.



    Parameters

    ----------

    mean : ndarray

        Mean vector of the initial state distribution.

    covariance : ndarray

        Covariance matrix of the initial state distribution.

    track_id : int

        A unique track identifier.

    n_init : int

        Number of consecutive detections before the track is confirmed. The

        track state is set to `Deleted` if a miss occurs within the first

        `n_init` frames.

    max_age : int

        The maximum number of consecutive misses before the track state is

        set to `Deleted`.

    feature : Optional[ndarray]

        Feature vector of the detection this track originates from. If not None,

        this feature is added to the `features` cache.



    Attributes

    ----------

    mean : ndarray

        Mean vector of the initial state distribution.

    covariance : ndarray

        Covariance matrix of the initial state distribution.

    track_id : int

        A unique track identifier.

    hits : int

        Total number of measurement updates.

    age : int

        Total number of frames since first occurance.

    time_since_update : int

        Total number of frames since last measurement update.

    state : TrackState

        The current track state.

    features : List[ndarray]

        A cache of features. On each measurement update, the associated feature

        vector is added to this list.



    """

    def __init__(self, detection, track_id, class_id, conf, n_init, max_age, ema_alpha,

                 feature=None):
        self.track_id = track_id
        self.class_id = int(class_id)
        self.hits = 1
        self.age = 1
        self.time_since_update = 0
        self.max_num_updates_wo_assignment = 7
        self.updates_wo_assignment = 0
        self.ema_alpha = ema_alpha

        self.state = TrackState.Tentative
        self.features = []
        if feature is not None:
            feature /= np.linalg.norm(feature)
            self.features.append(feature)

        self.conf = conf
        self._n_init = n_init
        self._max_age = max_age

        self.kf = KalmanFilter()
        self.mean, self.covariance = self.kf.initiate(detection)
        
        # Initializing trajectory queue
        self.q = deque(maxlen=25)

    def to_tlwh(self):
        """Get current position in bounding box format `(top left x, top left y,

        width, height)`.



        Returns

        -------

        ndarray

            The bounding box.



        """
        ret = self.mean[:4].copy()
        ret[2] *= ret[3]
        ret[:2] -= ret[2:] / 2
        return ret

    def to_tlbr(self):
        """Get kf estimated current position in bounding box format `(min x, miny, max x,

        max y)`.



        Returns

        -------

        ndarray

            The predicted kf bounding box.



        """
        ret = self.to_tlwh()
        ret[2:] = ret[:2] + ret[2:]
        return ret


    def ECC(self, src, dst, warp_mode = cv2.MOTION_EUCLIDEAN, eps = 1e-5,

        max_iter = 100, scale = 0.1, align = False):
        """Compute the warp matrix from src to dst.

        Parameters

        ----------

        src : ndarray 

            An NxM matrix of source img(BGR or Gray), it must be the same format as dst.

        dst : ndarray

            An NxM matrix of target img(BGR or Gray).

        warp_mode: flags of opencv

            translation: cv2.MOTION_TRANSLATION

            rotated and shifted: cv2.MOTION_EUCLIDEAN

            affine(shift,rotated,shear): cv2.MOTION_AFFINE

            homography(3d): cv2.MOTION_HOMOGRAPHY

        eps: float

            the threshold of the increment in the correlation coefficient between two iterations

        max_iter: int

            the number of iterations.

        scale: float or [int, int]

            scale_ratio: float

            scale_size: [W, H]

        align: bool

            whether to warp affine or perspective transforms to the source image

        Returns

        -------

        warp matrix : ndarray

            Returns the warp matrix from src to dst.

            if motion models is homography, the warp matrix will be 3x3, otherwise 2x3

        src_aligned: ndarray

            aligned source image of gray

        """

        # BGR2GRAY
        if src.ndim == 3:
            # Convert images to grayscale
            src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
            dst = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)

        # make the imgs smaller to speed up
        if scale is not None:
            if isinstance(scale, float) or isinstance(scale, int):
                if scale != 1:
                    src_r = cv2.resize(src, (0, 0), fx = scale, fy = scale,interpolation =  cv2.INTER_LINEAR)
                    dst_r = cv2.resize(dst, (0, 0), fx = scale, fy = scale,interpolation =  cv2.INTER_LINEAR)
                    scale = [scale, scale]
                else:
                    src_r, dst_r = src, dst
                    scale = None
            else:
                if scale[0] != src.shape[1] and scale[1] != src.shape[0]:
                    src_r = cv2.resize(src, (scale[0], scale[1]), interpolation = cv2.INTER_LINEAR)
                    dst_r = cv2.resize(dst, (scale[0], scale[1]), interpolation=cv2.INTER_LINEAR)
                    scale = [scale[0] / src.shape[1], scale[1] / src.shape[0]]
                else:
                    src_r, dst_r = src, dst
                    scale = None
        else:
            src_r, dst_r = src, dst

        # Define 2x3 or 3x3 matrices and initialize the matrix to identity
        if warp_mode == cv2.MOTION_HOMOGRAPHY :
            warp_matrix = np.eye(3, 3, dtype=np.float32)
        else :
            warp_matrix = np.eye(2, 3, dtype=np.float32)

        # Define termination criteria
        criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, max_iter, eps)

        # Run the ECC algorithm. The results are stored in warp_matrix.
        try:
            (cc, warp_matrix) = cv2.findTransformECC (src_r, dst_r, warp_matrix, warp_mode, criteria, None, 1)
        except cv2.error as e:
            print('ecc transform failed')
            return None, None
        
        if scale is not None:
            warp_matrix[0, 2] = warp_matrix[0, 2] / scale[0]
            warp_matrix[1, 2] = warp_matrix[1, 2] / scale[1]

        if align:
            sz = src.shape
            if warp_mode == cv2.MOTION_HOMOGRAPHY:
                # Use warpPerspective for Homography
                src_aligned = cv2.warpPerspective(src, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR)
            else :
                # Use warpAffine for Translation, Euclidean and Affine
                src_aligned = cv2.warpAffine(src, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR)
            return warp_matrix, src_aligned
        else:
            return warp_matrix, None


    def get_matrix(self, matrix):
        eye = np.eye(3)
        dist = np.linalg.norm(eye - matrix)
        if dist < 100:
            return matrix
        else:
            return eye

    def camera_update(self, previous_frame, next_frame):
        warp_matrix, src_aligned = self.ECC(previous_frame, next_frame)
        if warp_matrix is None and src_aligned is None:
            return
        [a,b] = warp_matrix
        warp_matrix=np.array([a,b,[0,0,1]])
        warp_matrix = warp_matrix.tolist()
        matrix = self.get_matrix(warp_matrix)

        x1, y1, x2, y2 = self.to_tlbr()
        x1_, y1_, _ = matrix @ np.array([x1, y1, 1]).T
        x2_, y2_, _ = matrix @ np.array([x2, y2, 1]).T
        w, h = x2_ - x1_, y2_ - y1_
        cx, cy = x1_ + w / 2, y1_ + h / 2
        self.mean[:4] = [cx, cy, w / h, h]


    def increment_age(self):
        self.age += 1
        self.time_since_update += 1

    def predict(self, kf):
        """Propagate the state distribution to the current time step using a

        Kalman filter prediction step.



        Parameters

        ----------

        kf : kalman_filter.KalmanFilter

            The Kalman filter.



        """
        self.mean, self.covariance = self.kf.predict(self.mean, self.covariance)
        self.age += 1
        self.time_since_update += 1
        
    def update_kf(self, bbox, confidence=0.5):
        self.updates_wo_assignment = self.updates_wo_assignment + 1
        self.mean, self.covariance = self.kf.update(self.mean, self.covariance, bbox, confidence)
        tlbr = self.to_tlbr()
        x_c = int((tlbr[0] + tlbr[2]) / 2)
        y_c = int((tlbr[1] + tlbr[3]) / 2)
        self.q.append(('predupdate', (x_c, y_c)))

    def update(self, detection, class_id, conf):
        """Perform Kalman filter measurement update step and update the feature

        cache.

        Parameters

        ----------

        detection : Detection

            The associated detection.

        """
        self.conf = conf
        self.class_id = class_id.int()
        self.mean, self.covariance = self.kf.update(self.mean, self.covariance, detection.to_xyah(), detection.confidence)

        feature = detection.feature / np.linalg.norm(detection.feature)

        smooth_feat = self.ema_alpha * self.features[-1] + (1 - self.ema_alpha) * feature
        smooth_feat /= np.linalg.norm(smooth_feat)
        self.features = [smooth_feat]

        self.hits += 1
        self.time_since_update = 0
        if self.state == TrackState.Tentative and self.hits >= self._n_init:
            self.state = TrackState.Confirmed
        
        tlbr = self.to_tlbr()
        x_c = int((tlbr[0] + tlbr[2]) / 2)
        y_c = int((tlbr[1] + tlbr[3]) / 2)
        self.q.append(('observationupdate', (x_c, y_c)))

    def mark_missed(self):
        """Mark this track as missed (no association at the current time step).

        """
        if self.state == TrackState.Tentative:
            self.state = TrackState.Deleted
        elif self.time_since_update > self._max_age:
            self.state = TrackState.Deleted

    def is_tentative(self):
        """Returns True if this track is tentative (unconfirmed).

        """
        return self.state == TrackState.Tentative

    def is_confirmed(self):
        """Returns True if this track is confirmed."""
        return self.state == TrackState.Confirmed

    def is_deleted(self):
        """Returns True if this track is dead and should be deleted."""
        return self.state == TrackState.Deleted