Spaces:
Runtime error
Runtime error
File size: 4,882 Bytes
ac6e446 ecabfb6 ac6e446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import numpy as np
import torch
import sys
import cv2
import gdown
from os.path import exists as file_exists, join
import torchvision.transforms as transforms
from sort.nn_matching import NearestNeighborDistanceMetric
from sort.detection import Detection
from sort.tracker import Tracker
from reid_multibackend import ReIDDetectMultiBackend
from ultralytics.yolo.utils.ops import xyxy2xywh
class StrongSORT(object):
def __init__(self,
model_weights,
device,
fp16,
max_dist=0.2,
max_iou_dist=0.7,
max_age=70,
max_unmatched_preds=7,
n_init=3,
nn_budget=100,
mc_lambda=0.995,
ema_alpha=0.9
):
self.model = ReIDDetectMultiBackend(weights=model_weights, device=device, fp16=fp16)
self.max_dist = max_dist
metric = NearestNeighborDistanceMetric(
"cosine", self.max_dist, nn_budget)
self.tracker = Tracker(
metric, max_iou_dist=max_iou_dist, max_age=max_age, n_init=n_init, max_unmatched_preds=max_unmatched_preds, mc_lambda=mc_lambda, ema_alpha=ema_alpha)
def update(self, dets, ori_img):
xyxys = dets[:, 0:4]
confs = dets[:, 4]
clss = dets[:, 5]
classes = clss.numpy()
xywhs = xyxy2xywh(xyxys.numpy())
confs = confs.numpy()
self.height, self.width = ori_img.shape[:2]
# generate detections
features = self._get_features(xywhs, ori_img)
bbox_tlwh = self._xywh_to_tlwh(xywhs)
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
confs)]
# run on non-maximum supression
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
# update tracker
self.tracker.predict()
self.tracker.update(detections, clss, confs)
# output bbox identities
outputs = []
for track in self.tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
box = track.to_tlwh()
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
track_id = track.track_id
class_id = track.class_id
conf = track.conf
queue = track.q
outputs.append(np.array([x1, y1, x2, y2, track_id, class_id, conf, queue], dtype=object))
if len(outputs) > 0:
outputs = np.stack(outputs, axis=0)
return outputs
"""
TODO:
Convert bbox from xc_yc_w_h to xtl_ytl_w_h
Thanks [email protected] for reporting this bug!
"""
@staticmethod
def _xywh_to_tlwh(bbox_xywh):
if isinstance(bbox_xywh, np.ndarray):
bbox_tlwh = bbox_xywh.copy()
elif isinstance(bbox_xywh, torch.Tensor):
bbox_tlwh = bbox_xywh.clone()
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
return bbox_tlwh
def _xywh_to_xyxy(self, bbox_xywh):
x, y, w, h = bbox_xywh
x1 = max(int(x - w / 2), 0)
x2 = min(int(x + w / 2), self.width - 1)
y1 = max(int(y - h / 2), 0)
y2 = min(int(y + h / 2), self.height - 1)
return x1, y1, x2, y2
def _tlwh_to_xyxy(self, bbox_tlwh):
"""
TODO:
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
Thanks [email protected] for reporting this bug!
"""
x, y, w, h = bbox_tlwh
x1 = max(int(x), 0)
x2 = min(int(x+w), self.width - 1)
y1 = max(int(y), 0)
y2 = min(int(y+h), self.height - 1)
return x1, y1, x2, y2
def increment_ages(self):
self.tracker.increment_ages()
def _xyxy_to_tlwh(self, bbox_xyxy):
x1, y1, x2, y2 = bbox_xyxy
t = x1
l = y1
w = int(x2 - x1)
h = int(y2 - y1)
return t, l, w, h
def _get_features(self, bbox_xywh, ori_img):
im_crops = []
for box in bbox_xywh:
x1, y1, x2, y2 = self._xywh_to_xyxy(box)
im = ori_img[y1:y2, x1:x2]
im_crops.append(im)
if im_crops:
features = self.model(im_crops)
else:
features = np.array([])
return features
def trajectory(self, im0, q, color):
# Add rectangle to image (PIL-only)
for i, p in enumerate(q):
thickness = int(np.sqrt(float (i + 1)) * 1.5)
if p[0] == 'observationupdate':
cv2.circle(im0, p[1], 2, color=color, thickness=thickness)
else:
cv2.circle(im0, p[1], 2, color=(255,255,255), thickness=thickness)
|