File size: 4,882 Bytes
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
ecabfb6
ac6e446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import torch
import sys
import cv2
import gdown
from os.path import exists as file_exists, join
import torchvision.transforms as transforms

from sort.nn_matching import NearestNeighborDistanceMetric
from sort.detection import Detection
from sort.tracker import Tracker

from reid_multibackend import ReIDDetectMultiBackend

from ultralytics.yolo.utils.ops import xyxy2xywh


class StrongSORT(object):
    def __init__(self, 
                 model_weights,
                 device,
                 fp16,
                 max_dist=0.2,
                 max_iou_dist=0.7,
                 max_age=70,
                 max_unmatched_preds=7,
                 n_init=3,
                 nn_budget=100,
                 mc_lambda=0.995,
                 ema_alpha=0.9
                ):

        self.model = ReIDDetectMultiBackend(weights=model_weights, device=device, fp16=fp16)
        
        self.max_dist = max_dist
        metric = NearestNeighborDistanceMetric(
            "cosine", self.max_dist, nn_budget)
        self.tracker = Tracker(
            metric, max_iou_dist=max_iou_dist, max_age=max_age, n_init=n_init, max_unmatched_preds=max_unmatched_preds, mc_lambda=mc_lambda, ema_alpha=ema_alpha)

    def update(self, dets,  ori_img):
        
        xyxys = dets[:, 0:4]
        confs = dets[:, 4]
        clss = dets[:, 5]
        
        classes = clss.numpy()
        xywhs = xyxy2xywh(xyxys.numpy())
        confs = confs.numpy()
        self.height, self.width = ori_img.shape[:2]
        
        # generate detections
        features = self._get_features(xywhs, ori_img)
        bbox_tlwh = self._xywh_to_tlwh(xywhs)
        detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
            confs)]

        # run on non-maximum supression
        boxes = np.array([d.tlwh for d in detections])
        scores = np.array([d.confidence for d in detections])

        # update tracker
        self.tracker.predict()
        self.tracker.update(detections, clss, confs)

        # output bbox identities
        outputs = []
        for track in self.tracker.tracks:
            if not track.is_confirmed() or track.time_since_update > 1:
                continue

            box = track.to_tlwh()
            x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
            
            track_id = track.track_id
            class_id = track.class_id
            conf = track.conf
            queue = track.q
            outputs.append(np.array([x1, y1, x2, y2, track_id, class_id, conf, queue], dtype=object))
        if len(outputs) > 0:
            outputs = np.stack(outputs, axis=0)
        return outputs

    """
    TODO:
        Convert bbox from xc_yc_w_h to xtl_ytl_w_h
    Thanks [email protected] for reporting this bug!
    """
    @staticmethod
    def _xywh_to_tlwh(bbox_xywh):
        if isinstance(bbox_xywh, np.ndarray):
            bbox_tlwh = bbox_xywh.copy()
        elif isinstance(bbox_xywh, torch.Tensor):
            bbox_tlwh = bbox_xywh.clone()
        bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
        bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
        return bbox_tlwh

    def _xywh_to_xyxy(self, bbox_xywh):
        x, y, w, h = bbox_xywh
        x1 = max(int(x - w / 2), 0)
        x2 = min(int(x + w / 2), self.width - 1)
        y1 = max(int(y - h / 2), 0)
        y2 = min(int(y + h / 2), self.height - 1)
        return x1, y1, x2, y2

    def _tlwh_to_xyxy(self, bbox_tlwh):
        """
        TODO:
            Convert bbox from xtl_ytl_w_h to xc_yc_w_h
        Thanks [email protected] for reporting this bug!
        """
        x, y, w, h = bbox_tlwh
        x1 = max(int(x), 0)
        x2 = min(int(x+w), self.width - 1)
        y1 = max(int(y), 0)
        y2 = min(int(y+h), self.height - 1)
        return x1, y1, x2, y2

    def increment_ages(self):
        self.tracker.increment_ages()

    def _xyxy_to_tlwh(self, bbox_xyxy):
        x1, y1, x2, y2 = bbox_xyxy

        t = x1
        l = y1
        w = int(x2 - x1)
        h = int(y2 - y1)
        return t, l, w, h

    def _get_features(self, bbox_xywh, ori_img):
        im_crops = []
        for box in bbox_xywh:
            x1, y1, x2, y2 = self._xywh_to_xyxy(box)
            im = ori_img[y1:y2, x1:x2]
            im_crops.append(im)
        if im_crops:
            features = self.model(im_crops)
        else:
            features = np.array([])
        return features
    
    def trajectory(self, im0, q, color):
        # Add rectangle to image (PIL-only)
        for i, p in enumerate(q):
            thickness = int(np.sqrt(float (i + 1)) * 1.5)
            if p[0] == 'observationupdate': 
                cv2.circle(im0, p[1], 2, color=color, thickness=thickness)
            else:
                cv2.circle(im0, p[1], 2, color=(255,255,255), thickness=thickness)