import numpy as np import torch import sys import cv2 import gdown from os.path import exists as file_exists, join import torchvision.transforms as transforms from sort.nn_matching import NearestNeighborDistanceMetric from sort.detection import Detection from sort.tracker import Tracker from reid_multibackend import ReIDDetectMultiBackend from ultralytics.yolo.utils.ops import xyxy2xywh class StrongSORT(object): def __init__(self, model_weights, device, fp16, max_dist=0.2, max_iou_dist=0.7, max_age=70, max_unmatched_preds=7, n_init=3, nn_budget=100, mc_lambda=0.995, ema_alpha=0.9 ): self.model = ReIDDetectMultiBackend(weights=model_weights, device=device, fp16=fp16) self.max_dist = max_dist metric = NearestNeighborDistanceMetric( "cosine", self.max_dist, nn_budget) self.tracker = Tracker( metric, max_iou_dist=max_iou_dist, max_age=max_age, n_init=n_init, max_unmatched_preds=max_unmatched_preds, mc_lambda=mc_lambda, ema_alpha=ema_alpha) def update(self, dets, ori_img): xyxys = dets[:, 0:4] confs = dets[:, 4] clss = dets[:, 5] classes = clss.numpy() xywhs = xyxy2xywh(xyxys.numpy()) confs = confs.numpy() self.height, self.width = ori_img.shape[:2] # generate detections features = self._get_features(xywhs, ori_img) bbox_tlwh = self._xywh_to_tlwh(xywhs) detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate( confs)] # run on non-maximum supression boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) # update tracker self.tracker.predict() self.tracker.update(detections, clss, confs) # output bbox identities outputs = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue box = track.to_tlwh() x1, y1, x2, y2 = self._tlwh_to_xyxy(box) track_id = track.track_id class_id = track.class_id conf = track.conf queue = track.q outputs.append(np.array([x1, y1, x2, y2, track_id, class_id, conf, queue], dtype=object)) if len(outputs) > 0: outputs = np.stack(outputs, axis=0) return outputs """ TODO: Convert bbox from xc_yc_w_h to xtl_ytl_w_h Thanks JieChen91@github.com for reporting this bug! """ @staticmethod def _xywh_to_tlwh(bbox_xywh): if isinstance(bbox_xywh, np.ndarray): bbox_tlwh = bbox_xywh.copy() elif isinstance(bbox_xywh, torch.Tensor): bbox_tlwh = bbox_xywh.clone() bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2. bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2. return bbox_tlwh def _xywh_to_xyxy(self, bbox_xywh): x, y, w, h = bbox_xywh x1 = max(int(x - w / 2), 0) x2 = min(int(x + w / 2), self.width - 1) y1 = max(int(y - h / 2), 0) y2 = min(int(y + h / 2), self.height - 1) return x1, y1, x2, y2 def _tlwh_to_xyxy(self, bbox_tlwh): """ TODO: Convert bbox from xtl_ytl_w_h to xc_yc_w_h Thanks JieChen91@github.com for reporting this bug! """ x, y, w, h = bbox_tlwh x1 = max(int(x), 0) x2 = min(int(x+w), self.width - 1) y1 = max(int(y), 0) y2 = min(int(y+h), self.height - 1) return x1, y1, x2, y2 def increment_ages(self): self.tracker.increment_ages() def _xyxy_to_tlwh(self, bbox_xyxy): x1, y1, x2, y2 = bbox_xyxy t = x1 l = y1 w = int(x2 - x1) h = int(y2 - y1) return t, l, w, h def _get_features(self, bbox_xywh, ori_img): im_crops = [] for box in bbox_xywh: x1, y1, x2, y2 = self._xywh_to_xyxy(box) im = ori_img[y1:y2, x1:x2] im_crops.append(im) if im_crops: features = self.model(im_crops) else: features = np.array([]) return features def trajectory(self, im0, q, color): # Add rectangle to image (PIL-only) for i, p in enumerate(q): thickness = int(np.sqrt(float (i + 1)) * 1.5) if p[0] == 'observationupdate': cv2.circle(im0, p[1], 2, color=color, thickness=thickness) else: cv2.circle(im0, p[1], 2, color=(255,255,255), thickness=thickness)