Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +46 -37
src/streamlit_app.py
CHANGED
@@ -1,40 +1,49 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
import pandas as pd
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
#import library
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
import streamlit as st
|
5 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
6 |
+
from tensorflow_hub.keras_layer import KerasLayer
|
7 |
+
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow.keras.models import load_model
|
10 |
+
|
11 |
+
#import pickle
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
#load model
|
15 |
+
def run():
|
16 |
+
file = st.file_uploader("Upload an image", type=["jpg", "png"])
|
17 |
+
|
18 |
+
model = load_model('my_model.keras', custom_objects={'KerasLayer': KerasLayer})
|
19 |
+
target_size=(224, 224)
|
20 |
+
|
21 |
+
def import_and_predict(image_data, model):
|
22 |
+
image = load_img(image_data, target_size=(224, 224))
|
23 |
+
img_array = img_to_array(image)
|
24 |
+
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
25 |
+
|
26 |
+
# Normalize the image
|
27 |
+
img_array = img_array / 255.0
|
28 |
+
|
29 |
+
# Make prediction
|
30 |
+
predictions = model.predict(img_array)
|
31 |
+
|
32 |
+
# Get the class with the highest probability
|
33 |
+
idx = np.where(predictions >= 0.5, 1, 0).item()
|
34 |
+
# predicted_class = np.argmax(predictions)
|
35 |
+
|
36 |
+
jenis = ['Brain Tumor', 'Healthy']
|
37 |
+
result = f"Prediction: {jenis[idx]}"
|
38 |
+
|
39 |
+
return result
|
40 |
|
41 |
+
if file is None:
|
42 |
+
st.text("Please upload an image file")
|
43 |
+
else:
|
44 |
+
result = import_and_predict(file, model)
|
45 |
+
st.image(file)
|
46 |
+
st.write(result)
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|