Spaces:
Running
Running
File size: 5,638 Bytes
9f3b1ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import init, { Model } from "./build/m.js";
async function fetchArrayBuffer(url, cacheModel = true) {
if (!cacheModel)
return new Uint8Array(await (await fetch(url)).arrayBuffer());
const cacheName = "moondream-candle-cache";
const cache = await caches.open(cacheName);
const cachedResponse = await cache.match(url);
if (cachedResponse) {
const data = await cachedResponse.arrayBuffer();
return new Uint8Array(data);
}
const res = await fetch(url, { cache: "force-cache" });
cache.put(url, res.clone());
return new Uint8Array(await res.arrayBuffer());
}
async function concatenateArrayBuffers(urls) {
const arrayBuffers = await Promise.all(
urls.map((url) => fetchArrayBuffer(url))
);
let totalLength = arrayBuffers.reduce(
(acc, arrayBuffer) => acc + arrayBuffer.byteLength,
0
);
let concatenatedBuffer = new Uint8Array(totalLength);
let offset = 0;
arrayBuffers.forEach((buffer) => {
concatenatedBuffer.set(new Uint8Array(buffer), offset);
offset += buffer.byteLength;
});
return concatenatedBuffer;
}
class Moondream {
static imageArrayHash = {};
static instance = {};
static currentModelID = null;
static async getInstance(weightsURL, modelID, tokenizerURL, quantized) {
// load individual modelID only once
if (!this.instance[modelID]) {
await init();
self.postMessage({ status: "loading", message: "Loading Model" });
const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([
weightsURL instanceof Array
? concatenateArrayBuffers(weightsURL)
: fetchArrayBuffer(weightsURL),
fetchArrayBuffer(tokenizerURL),
]);
this.instance[modelID] = new Model(
weightsArrayU8,
tokenizerArrayU8,
quantized
);
}
this.currentModelID = modelID;
return this.instance[modelID];
}
// Remove the modelID parameter from setImageEmbeddings
static setImageEmbeddings(imageArrayU8) {
// check if image embeddings are already set for this image and model
const imageArrayHash = this.getSimpleHash(imageArrayU8);
if (
this.imageArrayHash[this.currentModelID] === imageArrayHash &&
this.instance[this.currentModelID]
) {
self.postMessage({
status: "embedding",
message: "Embeddings Already Set",
});
return;
}
this.imageArrayHash[this.currentModelID] = imageArrayHash;
this.instance[this.currentModelID].set_image_embeddings(imageArrayU8);
self.postMessage({ status: "embedding", message: "Embeddings Set" });
}
static getSimpleHash(imageArrayU8) {
// get simple hash of imageArrayU8
let imageArrayHash = 0;
for (let i = 0; i < imageArrayU8.length; i += 100) {
imageArrayHash ^= imageArrayU8[i];
}
return imageArrayHash.toString(16);
}
}
let controller = null;
self.addEventListener("message", (event) => {
if (event.data.command === "start") {
controller = new AbortController();
generate(event.data);
} else if (event.data.command === "abort") {
controller.abort();
}
});
async function generate(data) {
const {
weightsURL,
modelID,
tokenizerURL,
quantized,
imageURL,
prompt,
seed,
temp,
top_p,
repeatPenalty,
maxSeqLen,
verbose_prompt,
} = data;
try {
self.postMessage({ status: "loading", message: "Starting Moondream" });
const model = await Moondream.getInstance(
weightsURL,
modelID,
tokenizerURL,
quantized
);
self.postMessage({ status: "loading", message: "Initializing model" });
self.postMessage({ status: "loading", message: "Loading Image" });
const imageArrayU8 = await fetchArrayBuffer(imageURL, false);
self.postMessage({ status: "embedding", message: "Creating Embeddings" });
Moondream.setImageEmbeddings(imageArrayU8);
self.postMessage({
status: "complete-embedding",
message: "Embeddings Complete",
});
const firstToken = model.init_with_image_prompt(
prompt,
BigInt(seed),
temp,
top_p,
repeatPenalty,
64, //repeat_last_n
verbose_prompt
);
const seq_len = 2048;
let sentence = firstToken;
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1;
let startTime = performance.now();
let tokensCount = 0;
while (tokensCount < maxTokens) {
await new Promise(async (resolve) => {
if (controller && controller.signal.aborted) {
console.log("Aborted");
self.postMessage({
status: "aborted",
message: "Aborted",
output: prompt + sentence,
});
return;
}
const token = await model.next_token();
console.log("Token: ", token);
if (token === "<|endoftext|>") {
self.postMessage({
status: "complete",
message: "complete",
output: prompt + sentence,
});
return;
}
const tokensSec =
((tokensCount + 1) / (performance.now() - startTime)) * 1000;
sentence += token;
self.postMessage({
status: "generating",
message: "Generating token",
token: token,
sentence: sentence,
totalTime: performance.now() - startTime,
tokensSec,
prompt: prompt,
});
setTimeout(resolve, 0);
});
tokensCount++;
}
self.postMessage({
status: "complete",
message: "complete",
output: prompt + sentence,
});
} catch (e) {
self.postMessage({ error: e });
}
}
|