File size: 5,638 Bytes
9f3b1ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import init, { Model } from "./build/m.js";

async function fetchArrayBuffer(url, cacheModel = true) {
  if (!cacheModel)
    return new Uint8Array(await (await fetch(url)).arrayBuffer());
  const cacheName = "moondream-candle-cache";
  const cache = await caches.open(cacheName);
  const cachedResponse = await cache.match(url);
  if (cachedResponse) {
    const data = await cachedResponse.arrayBuffer();
    return new Uint8Array(data);
  }
  const res = await fetch(url, { cache: "force-cache" });
  cache.put(url, res.clone());
  return new Uint8Array(await res.arrayBuffer());
}

async function concatenateArrayBuffers(urls) {
  const arrayBuffers = await Promise.all(
    urls.map((url) => fetchArrayBuffer(url))
  );

  let totalLength = arrayBuffers.reduce(
    (acc, arrayBuffer) => acc + arrayBuffer.byteLength,
    0
  );
  let concatenatedBuffer = new Uint8Array(totalLength);

  let offset = 0;
  arrayBuffers.forEach((buffer) => {
    concatenatedBuffer.set(new Uint8Array(buffer), offset);
    offset += buffer.byteLength;
  });
  return concatenatedBuffer;
}

class Moondream {
  static imageArrayHash = {};
  static instance = {};
  static currentModelID = null;

  static async getInstance(weightsURL, modelID, tokenizerURL, quantized) {
    // load individual modelID only once
    if (!this.instance[modelID]) {
      await init();

      self.postMessage({ status: "loading", message: "Loading Model" });
      const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([
        weightsURL instanceof Array
          ? concatenateArrayBuffers(weightsURL)
          : fetchArrayBuffer(weightsURL),
        fetchArrayBuffer(tokenizerURL),
      ]);

      this.instance[modelID] = new Model(
        weightsArrayU8,
        tokenizerArrayU8,
        quantized
      );
    }
    this.currentModelID = modelID;
    return this.instance[modelID];
  }

  // Remove the modelID parameter from setImageEmbeddings
  static setImageEmbeddings(imageArrayU8) {
    // check if image embeddings are already set for this image and model
    const imageArrayHash = this.getSimpleHash(imageArrayU8);
    if (
      this.imageArrayHash[this.currentModelID] === imageArrayHash &&
      this.instance[this.currentModelID]
    ) {
      self.postMessage({
        status: "embedding",
        message: "Embeddings Already Set",
      });
      return;
    }
    this.imageArrayHash[this.currentModelID] = imageArrayHash;
    this.instance[this.currentModelID].set_image_embeddings(imageArrayU8);
    self.postMessage({ status: "embedding", message: "Embeddings Set" });
  }

  static getSimpleHash(imageArrayU8) {
    // get simple hash of imageArrayU8
    let imageArrayHash = 0;
    for (let i = 0; i < imageArrayU8.length; i += 100) {
      imageArrayHash ^= imageArrayU8[i];
    }
    return imageArrayHash.toString(16);
  }
}

let controller = null;
self.addEventListener("message", (event) => {
  if (event.data.command === "start") {
    controller = new AbortController();
    generate(event.data);
  } else if (event.data.command === "abort") {
    controller.abort();
  }
});

async function generate(data) {
  const {
    weightsURL,
    modelID,
    tokenizerURL,
    quantized,
    imageURL,
    prompt,
    seed,
    temp,
    top_p,
    repeatPenalty,
    maxSeqLen,
    verbose_prompt,
  } = data;
  try {
    self.postMessage({ status: "loading", message: "Starting Moondream" });
    const model = await Moondream.getInstance(
      weightsURL,
      modelID,
      tokenizerURL,
      quantized
    );

    self.postMessage({ status: "loading", message: "Initializing model" });

    self.postMessage({ status: "loading", message: "Loading Image" });
    const imageArrayU8 = await fetchArrayBuffer(imageURL, false);

    self.postMessage({ status: "embedding", message: "Creating Embeddings" });
    Moondream.setImageEmbeddings(imageArrayU8);
    self.postMessage({
      status: "complete-embedding",
      message: "Embeddings Complete",
    });
    const firstToken = model.init_with_image_prompt(
      prompt,
      BigInt(seed),
      temp,
      top_p,
      repeatPenalty,
      64, //repeat_last_n
      verbose_prompt
    );
    const seq_len = 2048;

    let sentence = firstToken;
    let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1;
    let startTime = performance.now();
    let tokensCount = 0;
    while (tokensCount < maxTokens) {
      await new Promise(async (resolve) => {
        if (controller && controller.signal.aborted) {
          console.log("Aborted");
          self.postMessage({
            status: "aborted",
            message: "Aborted",
            output: prompt + sentence,
          });
          return;
        }
        const token = await model.next_token();
        console.log("Token: ", token);
        if (token === "<|endoftext|>") {
          self.postMessage({
            status: "complete",
            message: "complete",
            output: prompt + sentence,
          });
          return;
        }
        const tokensSec =
          ((tokensCount + 1) / (performance.now() - startTime)) * 1000;

        sentence += token;
        self.postMessage({
          status: "generating",
          message: "Generating token",
          token: token,
          sentence: sentence,
          totalTime: performance.now() - startTime,
          tokensSec,
          prompt: prompt,
        });
        setTimeout(resolve, 0);
      });
      tokensCount++;
    }
    self.postMessage({
      status: "complete",
      message: "complete",
      output: prompt + sentence,
    });
  } catch (e) {
    self.postMessage({ error: e });
  }
}