File size: 6,303 Bytes
ea8cb06
 
 
 
 
 
 
 
56624ff
ea8cb06
 
56624ff
ea8cb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4883aa
ea8cb06
 
56624ff
ea8cb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56624ff
ea8cb06
56624ff
ea8cb06
 
 
 
 
 
 
 
 
 
 
7a485e5
ea8cb06
 
 
 
 
 
 
7a485e5
 
 
 
 
 
 
 
 
 
ea8cb06
 
 
 
 
 
 
 
 
 
 
 
 
7a485e5
 
 
 
 
 
 
 
ea8cb06
 
 
 
 
 
 
 
 
 
 
 
 
7a485e5
ea8cb06
 
 
 
 
 
 
 
 
7a485e5
ea8cb06
 
 
 
 
 
7a485e5
 
ea8cb06
 
 
 
 
7a485e5
ea8cb06
 
7a485e5
 
 
 
 
 
ea8cb06
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
from gradio_imageslider import ImageSlider
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
from PIL import Image
from torchvision import transforms
import tempfile
import os
import time
import uuid

LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_demofusion_sdxl.py",
    custom_revision="main",
    torch_dtype=dtype,
    variant="fp16",
    use_safetensors=True,
    vae=vae,
)
pipe = pipe.to(device)


def load_and_process_image(pil_image):
    transform = transforms.Compose(
        [
            transforms.Resize((1024, 1024)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ]
    )
    image = transform(pil_image)
    image = image.unsqueeze(0).half()
    return image


def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        pad_w = 0
        pad_h = (w - h) // 2
        new_image.paste(image, (0, pad_h))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        pad_w = (h - w) // 2
        pad_h = 0
        new_image.paste(image, (pad_w, 0))
        return new_image


def predict(
    input_image,
    prompt,
    negative_prompt,
    seed,
    scale=2,
    progress=gr.Progress(track_tqdm=True),
):
    if input_image is None:
        raise gr.Error("Please upload an image.")
    padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
    image_lr = load_and_process_image(padded_image).to(device)
    generator = torch.manual_seed(seed)
    last_time = time.time()
    images = pipe(
        prompt,
        negative_prompt=negative_prompt,
        image_lr=image_lr,
        width=1024 * scale,
        height=1024 * scale,
        view_batch_size=16,
        stride=64,
        generator=generator,
        num_inference_steps=25,
        guidance_scale=7.5,
        cosine_scale_1=3,
        cosine_scale_2=1,
        cosine_scale_3=1,
        sigma=0.8,
        multi_decoder=True,
        show_image=False,
        lowvram=LOW_MEMORY,
    )
    print(f"Time taken: {time.time() - last_time}")
    images_path = tempfile.mkdtemp()
    paths = []
    uuid_name = uuid.uuid4()
    for i, img in enumerate(images):
        img.save(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
        paths.append(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
    return (images[0], images[-1]), paths


css = """
#intro{
    max-width: 32rem;
    text-align: center;
    margin: 0 auto;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
# Zoom and Enhance with DemoFusion SDXL

[DemoFusion](https://github.com/PRIS-CV/DemoFusion) enables higher-resolution image generation.  
You can upload an initial image and prompt to generate an enhanced version. 
[Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.  
<small>
*Note*: The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
</small>
        """,
        elem_id="intro",
    )
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Input Image")
            prompt = gr.Textbox(
                label="Prompt",
                info="The prompt is very important to get the desired results. Please try to describe the image as best as you can.",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
            )
            scale = gr.Slider(
                minimum=1,
                maximum=5,
                value=2,
                step=1,
                label="x Scale",
                interactive=False,
            )
            seed = gr.Slider(
                minimum=0,
                maximum=2**64 - 1,
                value=1415926535897932,
                step=1,
                label="Seed",
                randomize=True,
            )
            btn = gr.Button()
        with gr.Column(scale=2):
            image_slider = ImageSlider()
            files = gr.Files()
    inputs = [image_input, prompt, negative_prompt, seed, scale]
    # inputs = [image_input, prompt, negative_prompt, seed]
    outputs = [image_slider, files]
    btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
    gr.Examples(
        fn=predict,
        examples=[
            [
                "./examples/lara.jpeg",
                "photography of lara croft 8k high definition award winning",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                1528069323235669750,
                2,
            ],
            [
                "./examples/cybetruck.jpeg",
                "photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                9257959681232992980,
                3,
            ],
            [
                "./examples/jesus.png",
                "a photorealistic painting of Jesus Christ, 4k high definition",
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                13317204146129588000,
                2,
            ],
            [
                "./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
                "A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow"
                "blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
                8398712905087378000,
                3
        ],
        inputs=inputs,
        outputs=outputs,
        cache_examples=True,
    )


demo.queue(api_open=False)
demo.launch(show_api=False)