File size: 8,911 Bytes
266dbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8457bc
266dbe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# https://github.com/GaParmar/img2img-turbo/blob/main/src/pix2pix_turbo.py
import os
import requests
import sys
import pdb
import copy
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
from peft import LoraConfig

from pipelines.pix2pix.model import (
    make_1step_sched,
    my_vae_encoder_fwd,
    my_vae_decoder_fwd,
)


class TwinConv(torch.nn.Module):
    def __init__(self, convin_pretrained, convin_curr):
        super(TwinConv, self).__init__()
        self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
        self.conv_in_curr = copy.deepcopy(convin_curr)
        self.r = None

    def forward(self, x):
        x1 = self.conv_in_pretrained(x).detach()
        x2 = self.conv_in_curr(x)
        return x1 * (1 - self.r) + x2 * (self.r)


class Pix2Pix_Turbo(torch.nn.Module):
    def __init__(self, name, ckpt_folder="checkpoints"):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(
            "stabilityai/sd-turbo", subfolder="tokenizer"
        )
        self.text_encoder = CLIPTextModel.from_pretrained(
            "stabilityai/sd-turbo", subfolder="text_encoder"
        ).cuda()
        self.sched = make_1step_sched()

        vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained(
            "stabilityai/sd-turbo", subfolder="unet"
        )

        if name == "edge_to_image":
            url = "https://www.cs.cmu.edu/~img2img-turbo/models/edge_to_image_loras.pkl"
            os.makedirs(ckpt_folder, exist_ok=True)
            outf = os.path.join(ckpt_folder, "edge_to_image_loras.pkl")
            if not os.path.exists(outf):
                print(f"Downloading checkpoint to {outf}")
                response = requests.get(url, stream=True)
                total_size_in_bytes = int(response.headers.get("content-length", 0))
                block_size = 1024  # 1 Kibibyte
                progress_bar = tqdm(
                    total=total_size_in_bytes, unit="iB", unit_scale=True
                )
                with open(outf, "wb") as file:
                    for data in response.iter_content(block_size):
                        progress_bar.update(len(data))
                        file.write(data)
                progress_bar.close()
                if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
                    print("ERROR, something went wrong")
                print(f"Downloaded successfully to {outf}")
            p_ckpt = outf
            sd = torch.load(p_ckpt, map_location="cpu")
            unet_lora_config = LoraConfig(
                r=sd["rank_unet"],
                init_lora_weights="gaussian",
                target_modules=sd["unet_lora_target_modules"],
            )

        if name == "sketch_to_image_stochastic":
            # download from url
            url = "https://www.cs.cmu.edu/~img2img-turbo/models/sketch_to_image_stochastic_lora.pkl"
            os.makedirs(ckpt_folder, exist_ok=True)
            outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic_lora.pkl")
            if not os.path.exists(outf):
                print(f"Downloading checkpoint to {outf}")
                response = requests.get(url, stream=True)
                total_size_in_bytes = int(response.headers.get("content-length", 0))
                block_size = 1024  # 1 Kibibyte
                progress_bar = tqdm(
                    total=total_size_in_bytes, unit="iB", unit_scale=True
                )
                with open(outf, "wb") as file:
                    for data in response.iter_content(block_size):
                        progress_bar.update(len(data))
                        file.write(data)
                progress_bar.close()
                if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
                    print("ERROR, something went wrong")
                print(f"Downloaded successfully to {outf}")
            p_ckpt = outf
            sd = torch.load(p_ckpt, map_location="cpu")
            unet_lora_config = LoraConfig(
                r=sd["rank_unet"],
                init_lora_weights="gaussian",
                target_modules=sd["unet_lora_target_modules"],
            )
            convin_pretrained = copy.deepcopy(unet.conv_in)
            unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)

        vae.encoder.forward = my_vae_encoder_fwd.__get__(
            vae.encoder, vae.encoder.__class__
        )
        vae.decoder.forward = my_vae_decoder_fwd.__get__(
            vae.decoder, vae.decoder.__class__
        )
        # add the skip connection convs
        vae.decoder.skip_conv_1 = torch.nn.Conv2d(
            512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        ).cuda()
        vae.decoder.skip_conv_2 = torch.nn.Conv2d(
            256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        ).cuda()
        vae.decoder.skip_conv_3 = torch.nn.Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        ).cuda()
        vae.decoder.skip_conv_4 = torch.nn.Conv2d(
            128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        ).cuda()
        vae_lora_config = LoraConfig(
            r=sd["rank_vae"],
            init_lora_weights="gaussian",
            target_modules=sd["vae_lora_target_modules"],
        )
        vae.decoder.ignore_skip = False
        vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
        unet.add_adapter(unet_lora_config)
        _sd_unet = unet.state_dict()
        for k in sd["state_dict_unet"]:
            _sd_unet[k] = sd["state_dict_unet"][k]
        unet.load_state_dict(_sd_unet)
        unet.enable_xformers_memory_efficient_attention()
        _sd_vae = vae.state_dict()
        for k in sd["state_dict_vae"]:
            _sd_vae[k] = sd["state_dict_vae"][k]
        vae.load_state_dict(_sd_vae)
        unet.to("cuda")
        vae.to("cuda")
        unet.eval()
        vae.eval()
        self.unet, self.vae = unet, vae
        self.vae.decoder.gamma = 1
        self.timesteps = torch.tensor([999], device="cuda").long()
        self.last_prompt = ""
        self.caption_enc = None
        self.device = "cuda"

    @torch.no_grad()
    def forward(self, c_t, prompt, deterministic=True, r=1.0, noise_map=1.0):
        # encode the text prompt
        if prompt != self.last_prompt:
            caption_tokens = self.tokenizer(
                prompt,
                max_length=self.tokenizer.model_max_length,
                padding="max_length",
                truncation=True,
                return_tensors="pt",
            ).input_ids.cuda()
            caption_enc = self.text_encoder(caption_tokens)[0]
            self.caption_enc = caption_enc
            self.last_prompt = prompt

        if deterministic:
            encoded_control = (
                self.vae.encode(c_t).latent_dist.sample()
                * self.vae.config.scaling_factor
            )
            model_pred = self.unet(
                encoded_control,
                self.timesteps,
                encoder_hidden_states=self.caption_enc,
            ).sample
            x_denoised = self.sched.step(
                model_pred, self.timesteps, encoded_control, return_dict=True
            ).prev_sample
            self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
            output_image = (
                self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample
            ).clamp(-1, 1)
        else:
            # scale the lora weights based on the r value
            self.unet.set_adapters(["default"], weights=[r])
            set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
            encoded_control = (
                self.vae.encode(c_t).latent_dist.sample()
                * self.vae.config.scaling_factor
            )
            # combine the input and noise
            unet_input = encoded_control * r + noise_map * (1 - r)
            self.unet.conv_in.r = r
            unet_output = self.unet(
                unet_input,
                self.timesteps,
                encoder_hidden_states=self.caption_enc,
            ).sample
            self.unet.conv_in.r = None
            x_denoised = self.sched.step(
                unet_output, self.timesteps, unet_input, return_dict=True
            ).prev_sample
            self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
            self.vae.decoder.gamma = r
            output_image = (
                self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample
            ).clamp(-1, 1)
        return output_image