radames's picture
fix baseparams
33596ca
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
TCDScheduler,
AutoencoderTiny,
)
from compel import Compel
import torch
from pipelines.utils.canny_gpu import SobelOperator
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
from config import Args
from pydantic import BaseModel, Field
from util import ParamsModel
from PIL import Image
taesd_model = "madebyollin/taesd"
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
base_model_id = "runwayml/stable-diffusion-v1-5"
pcm_base = "wangfuyun/PCM_Weights"
pcm_lora_ckpts = {
"2-Step": ["pcm_sd15_smallcfg_2step_converted.safetensors", 2, 0.0],
"4-Step": ["pcm_sd15_smallcfg_4step_converted.safetensors", 4, 0.0],
"8-Step": ["pcm_sd15_smallcfg_8step_converted.safetensors", 8, 0.0],
"16-Step": ["pcm_sd15_smallcfg_16step_converted.safetensors", 16, 0.0],
"Normal CFG 4-Step": ["pcm_sd15_normalcfg_4step_converted.safetensors", 4, 7.5],
"Normal CFG 8-Step": ["pcm_sd15_normalcfg_8step_converted.safetensors", 8, 7.5],
"Normal CFG 16-Step": ["pcm_sd15_normalcfg_16step_converted.safetensors", 16, 7.5],
}
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
page_content = """
"""
class Pipeline:
class Info(BaseModel):
name: str = "controlnet+loras+sd15"
title: str = "LCM + LoRA + Controlnet"
description: str = "Generates an image from a text prompt"
input_mode: str = "image"
page_content: str = page_content
class InputParams(ParamsModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
lora_ckpt_id: str = Field(
"4-Step",
title="PCM Base Model",
values=list(pcm_lora_ckpts.keys()),
field="select",
id="lora_ckpt_id",
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
strength: float = Field(
0.5,
min=0.25,
max=1.0,
step=0.001,
title="Strength",
field="range",
hide=True,
id="strength",
)
controlnet_scale: float = Field(
0.8,
min=0,
max=1.0,
step=0.001,
title="Controlnet Scale",
field="range",
hide=True,
id="controlnet_scale",
)
controlnet_start: float = Field(
0.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet Start",
field="range",
hide=True,
id="controlnet_start",
)
controlnet_end: float = Field(
1.0,
min=0,
max=1.0,
step=0.001,
title="Controlnet End",
field="range",
hide=True,
id="controlnet_end",
)
canny_low_threshold: float = Field(
0.31,
min=0,
max=1.0,
step=0.001,
title="Canny Low Threshold",
field="range",
hide=True,
id="canny_low_threshold",
)
canny_high_threshold: float = Field(
0.125,
min=0,
max=1.0,
step=0.001,
title="Canny High Threshold",
field="range",
hide=True,
id="canny_high_threshold",
)
debug_canny: bool = Field(
False,
title="Debug Canny",
field="checkbox",
hide=True,
id="debug_canny",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_model, torch_dtype=torch_dtype
).to(device)
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
base_model_id,
safety_checker=None,
controlnet=controlnet_canny,
)
self.canny_torch = SobelOperator(device=device)
self.pipe.scheduler = TCDScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
timestep_spacing="trailing",
)
self.pipe.set_progress_bar_config(disable=True)
if device.type != "mps":
self.pipe.unet.to(memory_format=torch.channels_last)
if args.taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
self.loaded_lora = "4-Step"
self.pipe.load_lora_weights(
pcm_base,
weight_name=pcm_lora_ckpts[self.loaded_lora][0],
subfolder="sd15",
)
self.pipe.to(device=device, dtype=torch_dtype).to(device)
if args.compel:
self.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=False,
)
if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(
prompt="warmup",
image=[Image.new("RGB", (768, 768))],
control_image=[Image.new("RGB", (768, 768))],
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
guidance_scale = pcm_lora_ckpts[params.lora_ckpt_id][2]
steps = pcm_lora_ckpts[params.lora_ckpt_id][1]
if self.loaded_lora != params.lora_ckpt_id:
checkpoint = pcm_lora_ckpts[params.lora_ckpt_id][0]
self.pipe.load_lora_weights(
pcm_base,
weight_name=checkpoint,
subfolder="sd15",
)
self.loaded_lora = params.lora_ckpt_id
prompt_embeds = None
prompt = params.prompt
if hasattr(self, "compel_proc"):
prompt_embeds = self.compel_proc(prompt)
prompt = None
control_image = self.canny_torch(
params.image, params.canny_low_threshold, params.canny_high_threshold
)
strength = params.strength
results = self.pipe(
image=params.image,
control_image=control_image,
prompt=prompt,
prompt_embeds=prompt_embeds,
generator=generator,
strength=strength,
num_inference_steps=steps,
guidance_scale=guidance_scale,
width=params.width,
height=params.height,
output_type="pil",
controlnet_conditioning_scale=params.controlnet_scale,
control_guidance_start=params.controlnet_start,
control_guidance_end=params.controlnet_end,
)
result_image = results.images[0]
if params.debug_canny:
# paste control_image on top of result_image
w0, h0 = (200, 200)
control_image = control_image.resize((w0, h0))
w1, h1 = result_image.size
result_image.paste(control_image, (w1 - w0, h1 - h0))
return result_image