Spaces:
Running
on
A100
Running
on
A100
from diffusers import ( | |
StableDiffusionControlNetImg2ImgPipeline, | |
ControlNetModel, | |
TCDScheduler, | |
AutoencoderTiny, | |
) | |
from compel import Compel | |
import torch | |
from pipelines.utils.canny_gpu import SobelOperator | |
try: | |
import intel_extension_for_pytorch as ipex # type: ignore | |
except: | |
pass | |
from config import Args | |
from pydantic import BaseModel, Field | |
from util import ParamsModel | |
from PIL import Image | |
taesd_model = "madebyollin/taesd" | |
controlnet_model = "lllyasviel/control_v11p_sd15_canny" | |
base_model_id = "runwayml/stable-diffusion-v1-5" | |
pcm_base = "wangfuyun/PCM_Weights" | |
pcm_lora_ckpts = { | |
"2-Step": ["pcm_sd15_smallcfg_2step_converted.safetensors", 2, 0.0], | |
"4-Step": ["pcm_sd15_smallcfg_4step_converted.safetensors", 4, 0.0], | |
"8-Step": ["pcm_sd15_smallcfg_8step_converted.safetensors", 8, 0.0], | |
"16-Step": ["pcm_sd15_smallcfg_16step_converted.safetensors", 16, 0.0], | |
"Normal CFG 4-Step": ["pcm_sd15_normalcfg_4step_converted.safetensors", 4, 7.5], | |
"Normal CFG 8-Step": ["pcm_sd15_normalcfg_8step_converted.safetensors", 8, 7.5], | |
"Normal CFG 16-Step": ["pcm_sd15_normalcfg_16step_converted.safetensors", 16, 7.5], | |
} | |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" | |
page_content = """ | |
""" | |
class Pipeline: | |
class Info(BaseModel): | |
name: str = "controlnet+loras+sd15" | |
title: str = "LCM + LoRA + Controlnet" | |
description: str = "Generates an image from a text prompt" | |
input_mode: str = "image" | |
page_content: str = page_content | |
class InputParams(ParamsModel): | |
prompt: str = Field( | |
default_prompt, | |
title="Prompt", | |
field="textarea", | |
id="prompt", | |
) | |
lora_ckpt_id: str = Field( | |
"4-Step", | |
title="PCM Base Model", | |
values=list(pcm_lora_ckpts.keys()), | |
field="select", | |
id="lora_ckpt_id", | |
) | |
seed: int = Field( | |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
) | |
width: int = Field( | |
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
) | |
height: int = Field( | |
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
) | |
strength: float = Field( | |
0.5, | |
min=0.25, | |
max=1.0, | |
step=0.001, | |
title="Strength", | |
field="range", | |
hide=True, | |
id="strength", | |
) | |
controlnet_scale: float = Field( | |
0.8, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Controlnet Scale", | |
field="range", | |
hide=True, | |
id="controlnet_scale", | |
) | |
controlnet_start: float = Field( | |
0.0, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Controlnet Start", | |
field="range", | |
hide=True, | |
id="controlnet_start", | |
) | |
controlnet_end: float = Field( | |
1.0, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Controlnet End", | |
field="range", | |
hide=True, | |
id="controlnet_end", | |
) | |
canny_low_threshold: float = Field( | |
0.31, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Canny Low Threshold", | |
field="range", | |
hide=True, | |
id="canny_low_threshold", | |
) | |
canny_high_threshold: float = Field( | |
0.125, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Canny High Threshold", | |
field="range", | |
hide=True, | |
id="canny_high_threshold", | |
) | |
debug_canny: bool = Field( | |
False, | |
title="Debug Canny", | |
field="checkbox", | |
hide=True, | |
id="debug_canny", | |
) | |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
controlnet_canny = ControlNetModel.from_pretrained( | |
controlnet_model, torch_dtype=torch_dtype | |
).to(device) | |
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
base_model_id, | |
safety_checker=None, | |
controlnet=controlnet_canny, | |
) | |
self.canny_torch = SobelOperator(device=device) | |
self.pipe.scheduler = TCDScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
timestep_spacing="trailing", | |
) | |
self.pipe.set_progress_bar_config(disable=True) | |
if device.type != "mps": | |
self.pipe.unet.to(memory_format=torch.channels_last) | |
if args.taesd: | |
self.pipe.vae = AutoencoderTiny.from_pretrained( | |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
).to(device) | |
self.loaded_lora = "4-Step" | |
self.pipe.load_lora_weights( | |
pcm_base, | |
weight_name=pcm_lora_ckpts[self.loaded_lora][0], | |
subfolder="sd15", | |
) | |
self.pipe.to(device=device, dtype=torch_dtype).to(device) | |
if args.compel: | |
self.compel_proc = Compel( | |
tokenizer=self.pipe.tokenizer, | |
text_encoder=self.pipe.text_encoder, | |
truncate_long_prompts=False, | |
) | |
if args.torch_compile: | |
self.pipe.unet = torch.compile( | |
self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe.vae = torch.compile( | |
self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe( | |
prompt="warmup", | |
image=[Image.new("RGB", (768, 768))], | |
control_image=[Image.new("RGB", (768, 768))], | |
) | |
def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
generator = torch.manual_seed(params.seed) | |
guidance_scale = pcm_lora_ckpts[params.lora_ckpt_id][2] | |
steps = pcm_lora_ckpts[params.lora_ckpt_id][1] | |
if self.loaded_lora != params.lora_ckpt_id: | |
checkpoint = pcm_lora_ckpts[params.lora_ckpt_id][0] | |
self.pipe.load_lora_weights( | |
pcm_base, | |
weight_name=checkpoint, | |
subfolder="sd15", | |
) | |
self.loaded_lora = params.lora_ckpt_id | |
prompt_embeds = None | |
prompt = params.prompt | |
if hasattr(self, "compel_proc"): | |
prompt_embeds = self.compel_proc(prompt) | |
prompt = None | |
control_image = self.canny_torch( | |
params.image, params.canny_low_threshold, params.canny_high_threshold | |
) | |
strength = params.strength | |
results = self.pipe( | |
image=params.image, | |
control_image=control_image, | |
prompt=prompt, | |
prompt_embeds=prompt_embeds, | |
generator=generator, | |
strength=strength, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
width=params.width, | |
height=params.height, | |
output_type="pil", | |
controlnet_conditioning_scale=params.controlnet_scale, | |
control_guidance_start=params.controlnet_start, | |
control_guidance_end=params.controlnet_end, | |
) | |
result_image = results.images[0] | |
if params.debug_canny: | |
# paste control_image on top of result_image | |
w0, h0 = (200, 200) | |
control_image = control_image.resize((w0, h0)) | |
w1, h1 = result_image.size | |
result_image.paste(control_image, (w1 - w0, h1 - h0)) | |
return result_image | |