IP Adpater examples
Browse files
server/pipelines/IPcompositionHyperSD15.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
DiffusionPipeline,
|
3 |
+
TCDScheduler,
|
4 |
+
)
|
5 |
+
from compel import Compel
|
6 |
+
import torch
|
7 |
+
from transformers import CLIPVisionModelWithProjection
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
try:
|
11 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
12 |
+
except:
|
13 |
+
pass
|
14 |
+
|
15 |
+
from config import Args
|
16 |
+
from pydantic import BaseModel, Field
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
20 |
+
ip_adapter_model = "ostris/ip-composition-adapter"
|
21 |
+
file_name = "ip_plus_composition_sd15.safetensors"
|
22 |
+
|
23 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
24 |
+
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
25 |
+
page_content = """
|
26 |
+
<h1 class="text-3xl font-bold">Hyper-SD Unified + IP Adpater Composition</h1>
|
27 |
+
<h3 class="text-xl font-bold">Image-to-Image ControlNet</h3>
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
class Pipeline:
|
33 |
+
class Info(BaseModel):
|
34 |
+
name: str = "controlnet+SDXL+Turbo"
|
35 |
+
title: str = "SDXL Turbo + Controlnet"
|
36 |
+
description: str = "Generates an image from a text prompt"
|
37 |
+
input_mode: str = "image"
|
38 |
+
page_content: str = page_content
|
39 |
+
|
40 |
+
class InputParams(BaseModel):
|
41 |
+
prompt: str = Field(
|
42 |
+
default_prompt,
|
43 |
+
title="Prompt",
|
44 |
+
field="textarea",
|
45 |
+
id="prompt",
|
46 |
+
)
|
47 |
+
negative_prompt: str = Field(
|
48 |
+
default_negative_prompt,
|
49 |
+
title="Negative Prompt",
|
50 |
+
field="textarea",
|
51 |
+
id="negative_prompt",
|
52 |
+
hide=True,
|
53 |
+
)
|
54 |
+
seed: int = Field(
|
55 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
56 |
+
)
|
57 |
+
steps: int = Field(
|
58 |
+
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
59 |
+
)
|
60 |
+
width: int = Field(
|
61 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
62 |
+
)
|
63 |
+
height: int = Field(
|
64 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
65 |
+
)
|
66 |
+
guidance_scale: float = Field(
|
67 |
+
0.0,
|
68 |
+
min=0,
|
69 |
+
max=10,
|
70 |
+
step=0.001,
|
71 |
+
title="Guidance Scale",
|
72 |
+
field="range",
|
73 |
+
hide=True,
|
74 |
+
id="guidance_scale",
|
75 |
+
)
|
76 |
+
ip_adapter_scale: float = Field(
|
77 |
+
0.8,
|
78 |
+
min=0.0,
|
79 |
+
max=1.0,
|
80 |
+
step=0.001,
|
81 |
+
title="IP Adapter Scale",
|
82 |
+
field="range",
|
83 |
+
hide=True,
|
84 |
+
id="ip_adapter_scale",
|
85 |
+
)
|
86 |
+
eta: float = Field(
|
87 |
+
1.0,
|
88 |
+
min=0,
|
89 |
+
max=1.0,
|
90 |
+
step=0.001,
|
91 |
+
title="Eta",
|
92 |
+
field="range",
|
93 |
+
hide=True,
|
94 |
+
id="eta",
|
95 |
+
)
|
96 |
+
|
97 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
98 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
99 |
+
"h94/IP-Adapter",
|
100 |
+
subfolder="models/image_encoder",
|
101 |
+
torch_dtype=torch.float16,
|
102 |
+
).to(device)
|
103 |
+
|
104 |
+
if args.safety_checker:
|
105 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
106 |
+
model_id,
|
107 |
+
# vae=vae,
|
108 |
+
torch_dtype=torch_dtype,
|
109 |
+
image_encoder=image_encoder,
|
110 |
+
variant="fp16",
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
114 |
+
model_id,
|
115 |
+
safety_checker=None,
|
116 |
+
torch_dtype=torch_dtype,
|
117 |
+
image_encoder=image_encoder,
|
118 |
+
variant="fp16",
|
119 |
+
)
|
120 |
+
|
121 |
+
self.pipe.load_ip_adapter(
|
122 |
+
ip_adapter_model,
|
123 |
+
subfolder="",
|
124 |
+
weight_name=[file_name],
|
125 |
+
image_encoder_folder=None,
|
126 |
+
)
|
127 |
+
|
128 |
+
self.pipe.load_lora_weights(
|
129 |
+
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")
|
130 |
+
)
|
131 |
+
self.pipe.fuse_lora()
|
132 |
+
|
133 |
+
self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config)
|
134 |
+
self.pipe.set_ip_adapter_scale([0.8])
|
135 |
+
|
136 |
+
# if args.compile:
|
137 |
+
# pipe.unet = oneflow_compile(pipe.unet, options=compile_options)
|
138 |
+
# pipe.vae.decoder = oneflow_compile(pipe.vae.decoder, options=compile_options)
|
139 |
+
|
140 |
+
if args.sfast:
|
141 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
142 |
+
compile,
|
143 |
+
CompilationConfig,
|
144 |
+
)
|
145 |
+
|
146 |
+
config = CompilationConfig.Default()
|
147 |
+
# config.enable_xformers = True
|
148 |
+
config.enable_triton = True
|
149 |
+
config.enable_cuda_graph = True
|
150 |
+
# cofig.
|
151 |
+
self.pipe = compile(self.pipe, config=config)
|
152 |
+
|
153 |
+
self.pipe.set_progress_bar_config(disable=True)
|
154 |
+
self.pipe.to(device=device)
|
155 |
+
if device.type != "mps":
|
156 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
157 |
+
|
158 |
+
if args.compel:
|
159 |
+
self.compel_proc = Compel(
|
160 |
+
tokenizer=self.pipe.tokenizer,
|
161 |
+
text_encoder=self.pipe.text_encoder,
|
162 |
+
truncate_long_prompts=False,
|
163 |
+
)
|
164 |
+
|
165 |
+
if args.torch_compile:
|
166 |
+
self.pipe.unet = torch.compile(
|
167 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
168 |
+
)
|
169 |
+
self.pipe.vae = torch.compile(
|
170 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
171 |
+
)
|
172 |
+
self.pipe(
|
173 |
+
prompt="warmup",
|
174 |
+
image=[Image.new("RGB", (768, 768))],
|
175 |
+
)
|
176 |
+
|
177 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
178 |
+
generator = torch.manual_seed(params.seed)
|
179 |
+
self.pipe.set_ip_adapter_scale([params.ip_adapter_scale])
|
180 |
+
|
181 |
+
prompt_embeds = None
|
182 |
+
prompt = params.prompt
|
183 |
+
if hasattr(self, "compel_proc"):
|
184 |
+
prompt_embeds = self.compel_proc(prompt)
|
185 |
+
prompt = None
|
186 |
+
|
187 |
+
steps = params.steps
|
188 |
+
|
189 |
+
results = self.pipe(
|
190 |
+
prompt=prompt,
|
191 |
+
prompt_embeds=prompt_embeds,
|
192 |
+
generator=generator,
|
193 |
+
num_inference_steps=steps,
|
194 |
+
guidance_scale=params.guidance_scale,
|
195 |
+
width=params.width,
|
196 |
+
eta=params.eta,
|
197 |
+
height=params.height,
|
198 |
+
ip_adapter_image=[params.image],
|
199 |
+
output_type="pil",
|
200 |
+
)
|
201 |
+
|
202 |
+
nsfw_content_detected = (
|
203 |
+
results.nsfw_content_detected[0]
|
204 |
+
if "nsfw_content_detected" in results
|
205 |
+
else False
|
206 |
+
)
|
207 |
+
if nsfw_content_detected:
|
208 |
+
return None
|
209 |
+
result_image = results.images[0]
|
210 |
+
|
211 |
+
return result_image
|
server/pipelines/IPcompositionHyperSDXL.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionXLPipeline,
|
3 |
+
AutoencoderKL,
|
4 |
+
TCDScheduler,
|
5 |
+
)
|
6 |
+
from compel import Compel, ReturnedEmbeddingsType
|
7 |
+
import torch
|
8 |
+
from transformers import CLIPVisionModelWithProjection
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
|
11 |
+
try:
|
12 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
13 |
+
except:
|
14 |
+
pass
|
15 |
+
|
16 |
+
from config import Args
|
17 |
+
from pydantic import BaseModel, Field
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
21 |
+
taesd_model = "madebyollin/taesdxl"
|
22 |
+
ip_adapter_model = "ostris/ip-composition-adapter"
|
23 |
+
file_name = "ip_plus_composition_sdxl.safetensors"
|
24 |
+
|
25 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
26 |
+
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
27 |
+
page_content = """
|
28 |
+
<h1 class="text-3xl font-bold">Hyper-SDXL Unified + IP Adpater Composition</h1>
|
29 |
+
<h3 class="text-xl font-bold">Image-to-Image ControlNet</h3>
|
30 |
+
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
class Pipeline:
|
35 |
+
class Info(BaseModel):
|
36 |
+
name: str = "controlnet+SDXL+Turbo"
|
37 |
+
title: str = "SDXL Turbo + Controlnet"
|
38 |
+
description: str = "Generates an image from a text prompt"
|
39 |
+
input_mode: str = "image"
|
40 |
+
page_content: str = page_content
|
41 |
+
|
42 |
+
class InputParams(BaseModel):
|
43 |
+
prompt: str = Field(
|
44 |
+
default_prompt,
|
45 |
+
title="Prompt",
|
46 |
+
field="textarea",
|
47 |
+
id="prompt",
|
48 |
+
)
|
49 |
+
negative_prompt: str = Field(
|
50 |
+
default_negative_prompt,
|
51 |
+
title="Negative Prompt",
|
52 |
+
field="textarea",
|
53 |
+
id="negative_prompt",
|
54 |
+
hide=True,
|
55 |
+
)
|
56 |
+
seed: int = Field(
|
57 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
58 |
+
)
|
59 |
+
steps: int = Field(
|
60 |
+
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
61 |
+
)
|
62 |
+
width: int = Field(
|
63 |
+
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
64 |
+
)
|
65 |
+
height: int = Field(
|
66 |
+
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
67 |
+
)
|
68 |
+
guidance_scale: float = Field(
|
69 |
+
0.0,
|
70 |
+
min=0,
|
71 |
+
max=10,
|
72 |
+
step=0.001,
|
73 |
+
title="Guidance Scale",
|
74 |
+
field="range",
|
75 |
+
hide=True,
|
76 |
+
id="guidance_scale",
|
77 |
+
)
|
78 |
+
ip_adapter_scale: float = Field(
|
79 |
+
0.8,
|
80 |
+
min=0.0,
|
81 |
+
max=1.0,
|
82 |
+
step=0.001,
|
83 |
+
title="IP Adapter Scale",
|
84 |
+
field="range",
|
85 |
+
hide=True,
|
86 |
+
id="ip_adapter_scale",
|
87 |
+
)
|
88 |
+
eta: float = Field(
|
89 |
+
1.0,
|
90 |
+
min=0,
|
91 |
+
max=1.0,
|
92 |
+
step=0.001,
|
93 |
+
title="Eta",
|
94 |
+
field="range",
|
95 |
+
hide=True,
|
96 |
+
id="eta",
|
97 |
+
)
|
98 |
+
|
99 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
100 |
+
vae = AutoencoderKL.from_pretrained(
|
101 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
102 |
+
)
|
103 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
104 |
+
"h94/IP-Adapter",
|
105 |
+
subfolder="models/image_encoder",
|
106 |
+
torch_dtype=torch.float16,
|
107 |
+
).to(device)
|
108 |
+
|
109 |
+
if args.safety_checker:
|
110 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
111 |
+
model_id,
|
112 |
+
# vae=vae,
|
113 |
+
torch_dtype=torch_dtype,
|
114 |
+
image_encoder=image_encoder,
|
115 |
+
variant="fp16",
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
119 |
+
model_id,
|
120 |
+
safety_checker=None,
|
121 |
+
torch_dtype=torch_dtype,
|
122 |
+
vae=vae,
|
123 |
+
image_encoder=image_encoder,
|
124 |
+
variant="fp16",
|
125 |
+
)
|
126 |
+
self.pipe.load_ip_adapter(
|
127 |
+
ip_adapter_model,
|
128 |
+
subfolder="",
|
129 |
+
weight_name=[file_name],
|
130 |
+
image_encoder_folder=None,
|
131 |
+
)
|
132 |
+
|
133 |
+
self.pipe.load_lora_weights(
|
134 |
+
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
135 |
+
)
|
136 |
+
self.pipe.fuse_lora()
|
137 |
+
|
138 |
+
self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config)
|
139 |
+
self.pipe.set_ip_adapter_scale([0.8])
|
140 |
+
|
141 |
+
if args.sfast:
|
142 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
143 |
+
compile,
|
144 |
+
CompilationConfig,
|
145 |
+
)
|
146 |
+
|
147 |
+
config = CompilationConfig.Default()
|
148 |
+
# config.enable_xformers = True
|
149 |
+
config.enable_triton = True
|
150 |
+
config.enable_cuda_graph = True
|
151 |
+
self.pipe = compile(self.pipe, config=config)
|
152 |
+
|
153 |
+
self.pipe.set_progress_bar_config(disable=True)
|
154 |
+
self.pipe.to(device=device)
|
155 |
+
if device.type != "mps":
|
156 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
157 |
+
|
158 |
+
if args.compel:
|
159 |
+
self.pipe.compel_proc = Compel(
|
160 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
161 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
162 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
163 |
+
requires_pooled=[False, True],
|
164 |
+
)
|
165 |
+
|
166 |
+
if args.torch_compile:
|
167 |
+
self.pipe.unet = torch.compile(
|
168 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
169 |
+
)
|
170 |
+
self.pipe.vae = torch.compile(
|
171 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
172 |
+
)
|
173 |
+
self.pipe(
|
174 |
+
prompt="warmup",
|
175 |
+
image=[Image.new("RGB", (768, 768))],
|
176 |
+
)
|
177 |
+
|
178 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
179 |
+
generator = torch.manual_seed(params.seed)
|
180 |
+
self.pipe.set_ip_adapter_scale([params.ip_adapter_scale])
|
181 |
+
|
182 |
+
prompt = params.prompt
|
183 |
+
negative_prompt = params.negative_prompt
|
184 |
+
prompt_embeds = None
|
185 |
+
pooled_prompt_embeds = None
|
186 |
+
negative_prompt_embeds = None
|
187 |
+
negative_pooled_prompt_embeds = None
|
188 |
+
if hasattr(self.pipe, "compel_proc"):
|
189 |
+
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
190 |
+
[params.prompt, params.negative_prompt]
|
191 |
+
)
|
192 |
+
prompt = None
|
193 |
+
negative_prompt = None
|
194 |
+
prompt_embeds = _prompt_embeds[0:1]
|
195 |
+
pooled_prompt_embeds = pooled_prompt_embeds[0:1]
|
196 |
+
negative_prompt_embeds = _prompt_embeds[1:2]
|
197 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
|
198 |
+
|
199 |
+
steps = params.steps
|
200 |
+
|
201 |
+
results = self.pipe(
|
202 |
+
prompt=prompt,
|
203 |
+
negative_prompt=negative_prompt,
|
204 |
+
prompt_embeds=prompt_embeds,
|
205 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
206 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
207 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
208 |
+
generator=generator,
|
209 |
+
num_inference_steps=steps,
|
210 |
+
guidance_scale=params.guidance_scale,
|
211 |
+
width=params.width,
|
212 |
+
eta=params.eta,
|
213 |
+
height=params.height,
|
214 |
+
ip_adapter_image=[params.image],
|
215 |
+
output_type="pil",
|
216 |
+
)
|
217 |
+
|
218 |
+
nsfw_content_detected = (
|
219 |
+
results.nsfw_content_detected[0]
|
220 |
+
if "nsfw_content_detected" in results
|
221 |
+
else False
|
222 |
+
)
|
223 |
+
if nsfw_content_detected:
|
224 |
+
return None
|
225 |
+
result_image = results.images[0]
|
226 |
+
|
227 |
+
return result_image
|
server/pipelines/controlnetHyperSDXL.py
CHANGED
@@ -20,7 +20,8 @@ from pydantic import BaseModel, Field
|
|
20 |
from PIL import Image
|
21 |
import math
|
22 |
|
23 |
-
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
|
|
24 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
25 |
taesd_model = "madebyollin/taesdxl"
|
26 |
|
@@ -192,7 +193,7 @@ class Pipeline:
|
|
192 |
)
|
193 |
|
194 |
config = CompilationConfig.Default()
|
195 |
-
config.enable_xformers = True
|
196 |
config.enable_triton = True
|
197 |
config.enable_cuda_graph = True
|
198 |
self.pipe = compile(self.pipe, config=config)
|
|
|
20 |
from PIL import Image
|
21 |
import math
|
22 |
|
23 |
+
# controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
24 |
+
controlnet_model = "xinsir/controlnet-canny-sdxl-1.0"
|
25 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
26 |
taesd_model = "madebyollin/taesdxl"
|
27 |
|
|
|
193 |
)
|
194 |
|
195 |
config = CompilationConfig.Default()
|
196 |
+
# config.enable_xformers = True
|
197 |
config.enable_triton = True
|
198 |
config.enable_cuda_graph = True
|
199 |
self.pipe = compile(self.pipe, config=config)
|
server/requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
diffusers==0.28.
|
2 |
transformers==4.41.1
|
3 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
4 |
-
torch==2.2.
|
5 |
fastapi==0.111.0
|
6 |
uvicorn[standard]==0.30.0
|
7 |
Pillow==10.3.0
|
@@ -12,8 +12,8 @@ peft==0.11.1
|
|
12 |
xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
|
13 |
markdown2
|
14 |
safetensors
|
15 |
-
stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.
|
16 |
-
oneflow @ https://github.com/siliconflow/oneflow_releases/releases/download/community_cu121/oneflow-0.9.1.
|
17 |
onediff @ git+https://github.com/siliconflow/onediff.git@main#egg=onediff ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
18 |
setuptools
|
19 |
mpmath==1.3.0
|
|
|
1 |
+
diffusers==0.28.2
|
2 |
transformers==4.41.1
|
3 |
--extra-index-url https://download.pytorch.org/whl/cu121;
|
4 |
+
torch==2.2.2
|
5 |
fastapi==0.111.0
|
6 |
uvicorn[standard]==0.30.0
|
7 |
Pillow==10.3.0
|
|
|
12 |
xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
|
13 |
markdown2
|
14 |
safetensors
|
15 |
+
stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/v1.0.5/stable_fast-1.0.5+torch222cu121-cp310-cp310-manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
16 |
+
oneflow @ https://github.com/siliconflow/oneflow_releases/releases/download/community_cu121/oneflow-0.9.1.dev20240515+cu121-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
17 |
onediff @ git+https://github.com/siliconflow/onediff.git@main#egg=onediff ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
18 |
setuptools
|
19 |
mpmath==1.3.0
|