Spaces:
Running
on
A100
Running
on
A100
unified safety_checker
Browse files- server/main.py +11 -2
- server/pipelines/IPcompositionHyperSD15.py +8 -26
- server/pipelines/IPcompositionHyperSDXL.py +9 -28
- server/pipelines/controlnet.py +6 -18
- server/pipelines/controlnetDepthFlashSD.py +6 -19
- server/pipelines/controlnetDepthHyperSD.py +6 -18
- server/pipelines/controlnetDepthHyperSDXL.py +7 -19
- server/pipelines/controlnetFlashSD.py +6 -18
- server/pipelines/controlnetFlashSDXL.py +7 -19
- server/pipelines/controlnetHyperSD.py +6 -18
- server/pipelines/controlnetHyperSDXL.py +7 -19
- server/pipelines/controlnetLoraSD15.py +7 -22
- server/pipelines/controlnetLoraSD15QRCode.py +4 -17
- server/pipelines/controlnetLoraSDXL-Lightning.py +1 -12
- server/pipelines/controlnetLoraSDXL.py +8 -24
- server/pipelines/controlnetMistoLineHyperSDXL.py +7 -19
- server/pipelines/controlnetPCMSD15.py +5 -18
- server/pipelines/controlnetSDTurbo.py +1 -12
- server/pipelines/controlnetSDXLTurbo.py +1 -12
- server/pipelines/controlnetSegmindVegaRT.py +6 -20
- server/pipelines/img2img.py +5 -17
- server/pipelines/img2imgSDTurbo.py +5 -17
- server/pipelines/img2imgSDXL-Lightning.py +1 -11
- server/pipelines/img2imgSDXLTurbo.py +5 -17
- server/pipelines/img2imgSDXS512.py +5 -18
- server/pipelines/img2imgSegmindVegaRT.py +6 -21
- server/pipelines/txt2img.py +2 -13
- server/pipelines/txt2imgLora.py +2 -13
- server/pipelines/txt2imgLoraSDXL.py +7 -21
- server/pipelines/utils/safety_checker.py +12 -6
server/main.py
CHANGED
@@ -4,7 +4,8 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
4 |
from fastapi.staticfiles import StaticFiles
|
5 |
from fastapi import Request
|
6 |
import markdown2
|
7 |
-
|
|
|
8 |
import logging
|
9 |
from config import config, Args
|
10 |
from connection_manager import ConnectionManager, ServerFullException
|
@@ -28,6 +29,8 @@ class App:
|
|
28 |
self.pipeline = pipeline
|
29 |
self.app = FastAPI()
|
30 |
self.conn_manager = ConnectionManager()
|
|
|
|
|
31 |
self.init_app()
|
32 |
|
33 |
def init_app(self):
|
@@ -113,8 +116,14 @@ class App:
|
|
113 |
if params.__dict__ == last_params.__dict__ or params is None:
|
114 |
await asyncio.sleep(THROTTLE)
|
115 |
continue
|
116 |
-
last_params = params
|
117 |
image = pipeline.predict(params)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if image is None:
|
119 |
continue
|
120 |
frame = pil_to_frame(image)
|
|
|
4 |
from fastapi.staticfiles import StaticFiles
|
5 |
from fastapi import Request
|
6 |
import markdown2
|
7 |
+
from pipelines.utils.safety_checker import SafetyChecker
|
8 |
+
from PIL import Image
|
9 |
import logging
|
10 |
from config import config, Args
|
11 |
from connection_manager import ConnectionManager, ServerFullException
|
|
|
29 |
self.pipeline = pipeline
|
30 |
self.app = FastAPI()
|
31 |
self.conn_manager = ConnectionManager()
|
32 |
+
if self.args.safety_checker:
|
33 |
+
self.safety_checker = SafetyChecker(device=device.type)
|
34 |
self.init_app()
|
35 |
|
36 |
def init_app(self):
|
|
|
116 |
if params.__dict__ == last_params.__dict__ or params is None:
|
117 |
await asyncio.sleep(THROTTLE)
|
118 |
continue
|
119 |
+
last_params: SimpleNamespace = params
|
120 |
image = pipeline.predict(params)
|
121 |
+
|
122 |
+
if self.args.safety_checker:
|
123 |
+
image, has_nsfw_concept = self.safety_checker(image)
|
124 |
+
if has_nsfw_concept:
|
125 |
+
image = None
|
126 |
+
|
127 |
if image is None:
|
128 |
continue
|
129 |
frame = pil_to_frame(image)
|
server/pipelines/IPcompositionHyperSD15.py
CHANGED
@@ -101,22 +101,13 @@ class Pipeline:
|
|
101 |
torch_dtype=torch.float16,
|
102 |
).to(device)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
-
else:
|
113 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
114 |
-
model_id,
|
115 |
-
safety_checker=None,
|
116 |
-
torch_dtype=torch_dtype,
|
117 |
-
image_encoder=image_encoder,
|
118 |
-
variant="fp16",
|
119 |
-
)
|
120 |
|
121 |
self.pipe.load_ip_adapter(
|
122 |
ip_adapter_model,
|
@@ -199,13 +190,4 @@ class Pipeline:
|
|
199 |
output_type="pil",
|
200 |
)
|
201 |
|
202 |
-
|
203 |
-
results.nsfw_content_detected[0]
|
204 |
-
if "nsfw_content_detected" in results
|
205 |
-
else False
|
206 |
-
)
|
207 |
-
if nsfw_content_detected:
|
208 |
-
return None
|
209 |
-
result_image = results.images[0]
|
210 |
-
|
211 |
-
return result_image
|
|
|
101 |
torch_dtype=torch.float16,
|
102 |
).to(device)
|
103 |
|
104 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
105 |
+
model_id,
|
106 |
+
safety_checker=None,
|
107 |
+
torch_dtype=torch_dtype,
|
108 |
+
image_encoder=image_encoder,
|
109 |
+
variant="fp16",
|
110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
self.pipe.load_ip_adapter(
|
113 |
ip_adapter_model,
|
|
|
190 |
output_type="pil",
|
191 |
)
|
192 |
|
193 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/IPcompositionHyperSDXL.py
CHANGED
@@ -106,23 +106,14 @@ class Pipeline:
|
|
106 |
torch_dtype=torch.float16,
|
107 |
).to(device)
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
else:
|
118 |
-
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
119 |
-
model_id,
|
120 |
-
safety_checker=None,
|
121 |
-
torch_dtype=torch_dtype,
|
122 |
-
vae=vae,
|
123 |
-
image_encoder=image_encoder,
|
124 |
-
variant="fp16",
|
125 |
-
)
|
126 |
self.pipe.load_ip_adapter(
|
127 |
ip_adapter_model,
|
128 |
subfolder="",
|
@@ -214,14 +205,4 @@ class Pipeline:
|
|
214 |
ip_adapter_image=[params.image],
|
215 |
output_type="pil",
|
216 |
)
|
217 |
-
|
218 |
-
nsfw_content_detected = (
|
219 |
-
results.nsfw_content_detected[0]
|
220 |
-
if "nsfw_content_detected" in results
|
221 |
-
else False
|
222 |
-
)
|
223 |
-
if nsfw_content_detected:
|
224 |
-
return None
|
225 |
-
result_image = results.images[0]
|
226 |
-
|
227 |
-
return result_image
|
|
|
106 |
torch_dtype=torch.float16,
|
107 |
).to(device)
|
108 |
|
109 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
110 |
+
model_id,
|
111 |
+
safety_checker=None,
|
112 |
+
torch_dtype=torch_dtype,
|
113 |
+
vae=vae,
|
114 |
+
image_encoder=image_encoder,
|
115 |
+
variant="fp16",
|
116 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
self.pipe.load_ip_adapter(
|
118 |
ip_adapter_model,
|
119 |
subfolder="",
|
|
|
205 |
ip_adapter_image=[params.image],
|
206 |
output_type="pil",
|
207 |
)
|
208 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/controlnet.py
CHANGED
@@ -159,16 +159,12 @@ class Pipeline:
|
|
159 |
controlnet_canny = ControlNetModel.from_pretrained(
|
160 |
controlnet_model, torch_dtype=torch_dtype
|
161 |
).to(device)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
base_model,
|
169 |
-
safety_checker=None,
|
170 |
-
controlnet=controlnet_canny,
|
171 |
-
)
|
172 |
if args.taesd:
|
173 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
174 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -254,14 +250,6 @@ class Pipeline:
|
|
254 |
control_guidance_start=params.controlnet_start,
|
255 |
control_guidance_end=params.controlnet_end,
|
256 |
)
|
257 |
-
|
258 |
-
nsfw_content_detected = (
|
259 |
-
results.nsfw_content_detected[0]
|
260 |
-
if "nsfw_content_detected" in results
|
261 |
-
else False
|
262 |
-
)
|
263 |
-
if nsfw_content_detected:
|
264 |
-
return None
|
265 |
result_image = results.images[0]
|
266 |
if params.debug_canny:
|
267 |
# paste control_image on top of result_image
|
|
|
159 |
controlnet_canny = ControlNetModel.from_pretrained(
|
160 |
controlnet_model, torch_dtype=torch_dtype
|
161 |
).to(device)
|
162 |
+
|
163 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
164 |
+
base_model,
|
165 |
+
safety_checker=None,
|
166 |
+
controlnet=controlnet_canny,
|
167 |
+
)
|
|
|
|
|
|
|
|
|
168 |
if args.taesd:
|
169 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
170 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
250 |
control_guidance_start=params.controlnet_start,
|
251 |
control_guidance_end=params.controlnet_end,
|
252 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
result_image = results.images[0]
|
254 |
if params.debug_canny:
|
255 |
# paste control_image on top of result_image
|
server/pipelines/controlnetDepthFlashSD.py
CHANGED
@@ -146,17 +146,12 @@ class Pipeline:
|
|
146 |
device=device,
|
147 |
)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
model_id,
|
156 |
-
safety_checker=None,
|
157 |
-
controlnet=controlnet_depth,
|
158 |
-
torch_dtype=torch_dtype,
|
159 |
-
)
|
160 |
|
161 |
if args.taesd:
|
162 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
@@ -258,14 +253,6 @@ class Pipeline:
|
|
258 |
control_guidance_start=params.controlnet_start,
|
259 |
control_guidance_end=params.controlnet_end,
|
260 |
)
|
261 |
-
|
262 |
-
nsfw_content_detected = (
|
263 |
-
results.nsfw_content_detected[0]
|
264 |
-
if "nsfw_content_detected" in results
|
265 |
-
else False
|
266 |
-
)
|
267 |
-
if nsfw_content_detected:
|
268 |
-
return None
|
269 |
result_image = results.images[0]
|
270 |
if params.debug_depth:
|
271 |
# paste control_image on top of result_image
|
|
|
146 |
device=device,
|
147 |
)
|
148 |
|
149 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
150 |
+
model_id,
|
151 |
+
safety_checker=None,
|
152 |
+
controlnet=controlnet_depth,
|
153 |
+
torch_dtype=torch_dtype,
|
154 |
+
)
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
if args.taesd:
|
157 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
|
|
253 |
control_guidance_start=params.controlnet_start,
|
254 |
control_guidance_end=params.controlnet_end,
|
255 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
result_image = results.images[0]
|
257 |
if params.debug_depth:
|
258 |
# paste control_image on top of result_image
|
server/pipelines/controlnetDepthHyperSD.py
CHANGED
@@ -148,17 +148,12 @@ class Pipeline:
|
|
148 |
device=device,
|
149 |
)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
model_id,
|
158 |
-
safety_checker=None,
|
159 |
-
controlnet=controlnet_depth,
|
160 |
-
torch_dtype=torch_dtype,
|
161 |
-
)
|
162 |
|
163 |
if args.taesd:
|
164 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
@@ -259,13 +254,6 @@ class Pipeline:
|
|
259 |
control_guidance_end=params.controlnet_end,
|
260 |
)
|
261 |
|
262 |
-
nsfw_content_detected = (
|
263 |
-
results.nsfw_content_detected[0]
|
264 |
-
if "nsfw_content_detected" in results
|
265 |
-
else False
|
266 |
-
)
|
267 |
-
if nsfw_content_detected:
|
268 |
-
return None
|
269 |
result_image = results.images[0]
|
270 |
if params.debug_depth:
|
271 |
# paste control_image on top of result_image
|
|
|
148 |
device=device,
|
149 |
)
|
150 |
|
151 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
152 |
+
model_id,
|
153 |
+
safety_checker=None,
|
154 |
+
controlnet=controlnet_depth,
|
155 |
+
torch_dtype=torch_dtype,
|
156 |
+
)
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
if args.taesd:
|
159 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
|
|
254 |
control_guidance_end=params.controlnet_end,
|
255 |
)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
result_image = results.images[0]
|
258 |
if params.debug_depth:
|
259 |
# paste control_image on top of result_image
|
server/pipelines/controlnetDepthHyperSDXL.py
CHANGED
@@ -151,18 +151,13 @@ class Pipeline:
|
|
151 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
152 |
)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
safety_checker=None,
|
162 |
-
controlnet=controlnet_depth,
|
163 |
-
vae=vae,
|
164 |
-
torch_dtype=torch_dtype,
|
165 |
-
)
|
166 |
|
167 |
self.pipe.load_lora_weights(
|
168 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
@@ -258,13 +253,6 @@ class Pipeline:
|
|
258 |
control_guidance_end=params.controlnet_end,
|
259 |
)
|
260 |
|
261 |
-
nsfw_content_detected = (
|
262 |
-
results.nsfw_content_detected[0]
|
263 |
-
if "nsfw_content_detected" in results
|
264 |
-
else False
|
265 |
-
)
|
266 |
-
if nsfw_content_detected:
|
267 |
-
return None
|
268 |
result_image = results.images[0]
|
269 |
if params.debug_depth:
|
270 |
# paste control_image on top of result_image
|
|
|
151 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
152 |
)
|
153 |
|
154 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
155 |
+
model_id,
|
156 |
+
safety_checker=None,
|
157 |
+
controlnet=controlnet_depth,
|
158 |
+
vae=vae,
|
159 |
+
torch_dtype=torch_dtype,
|
160 |
+
)
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
self.pipe.load_lora_weights(
|
163 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
|
|
253 |
control_guidance_end=params.controlnet_end,
|
254 |
)
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
result_image = results.images[0]
|
257 |
if params.debug_depth:
|
258 |
# paste control_image on top of result_image
|
server/pipelines/controlnetFlashSD.py
CHANGED
@@ -138,17 +138,12 @@ class Pipeline:
|
|
138 |
controlnet_model, torch_dtype=torch_dtype
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
model_id,
|
148 |
-
safety_checker=None,
|
149 |
-
controlnet=controlnet_canny,
|
150 |
-
torch_dtype=torch_dtype,
|
151 |
-
)
|
152 |
|
153 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
154 |
model_id,
|
@@ -252,13 +247,6 @@ class Pipeline:
|
|
252 |
control_guidance_end=params.controlnet_end,
|
253 |
)
|
254 |
|
255 |
-
nsfw_content_detected = (
|
256 |
-
results.nsfw_content_detected[0]
|
257 |
-
if "nsfw_content_detected" in results
|
258 |
-
else False
|
259 |
-
)
|
260 |
-
if nsfw_content_detected:
|
261 |
-
return None
|
262 |
result_image = results.images[0]
|
263 |
if params.debug_canny:
|
264 |
# paste control_image on top of result_image
|
|
|
138 |
controlnet_model, torch_dtype=torch_dtype
|
139 |
)
|
140 |
|
141 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
142 |
+
model_id,
|
143 |
+
safety_checker=None,
|
144 |
+
controlnet=controlnet_canny,
|
145 |
+
torch_dtype=torch_dtype,
|
146 |
+
)
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
149 |
model_id,
|
|
|
247 |
control_guidance_end=params.controlnet_end,
|
248 |
)
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
result_image = results.images[0]
|
251 |
if params.debug_canny:
|
252 |
# paste control_image on top of result_image
|
server/pipelines/controlnetFlashSDXL.py
CHANGED
@@ -143,18 +143,13 @@ class Pipeline:
|
|
143 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
144 |
)
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
safety_checker=None,
|
154 |
-
controlnet=controlnet_canny,
|
155 |
-
vae=vae,
|
156 |
-
torch_dtype=torch_dtype,
|
157 |
-
)
|
158 |
|
159 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
160 |
model_id,
|
@@ -253,13 +248,6 @@ class Pipeline:
|
|
253 |
control_guidance_end=params.controlnet_end,
|
254 |
)
|
255 |
|
256 |
-
nsfw_content_detected = (
|
257 |
-
results.nsfw_content_detected[0]
|
258 |
-
if "nsfw_content_detected" in results
|
259 |
-
else False
|
260 |
-
)
|
261 |
-
if nsfw_content_detected:
|
262 |
-
return None
|
263 |
result_image = results.images[0]
|
264 |
if params.debug_canny:
|
265 |
# paste control_image on top of result_image
|
|
|
143 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
144 |
)
|
145 |
|
146 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
147 |
+
model_id,
|
148 |
+
safety_checker=None,
|
149 |
+
controlnet=controlnet_canny,
|
150 |
+
vae=vae,
|
151 |
+
torch_dtype=torch_dtype,
|
152 |
+
)
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
self.pipe.scheduler = LCMScheduler.from_pretrained(
|
155 |
model_id,
|
|
|
248 |
control_guidance_end=params.controlnet_end,
|
249 |
)
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
result_image = results.images[0]
|
252 |
if params.debug_canny:
|
253 |
# paste control_image on top of result_image
|
server/pipelines/controlnetHyperSD.py
CHANGED
@@ -160,17 +160,12 @@ class Pipeline:
|
|
160 |
controlnet_model, torch_dtype=torch_dtype
|
161 |
)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
model_id,
|
170 |
-
safety_checker=None,
|
171 |
-
controlnet=controlnet_canny,
|
172 |
-
torch_dtype=torch_dtype,
|
173 |
-
)
|
174 |
|
175 |
self.pipe.load_lora_weights(
|
176 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")
|
@@ -269,13 +264,6 @@ class Pipeline:
|
|
269 |
control_guidance_end=params.controlnet_end,
|
270 |
)
|
271 |
|
272 |
-
nsfw_content_detected = (
|
273 |
-
results.nsfw_content_detected[0]
|
274 |
-
if "nsfw_content_detected" in results
|
275 |
-
else False
|
276 |
-
)
|
277 |
-
if nsfw_content_detected:
|
278 |
-
return None
|
279 |
result_image = results.images[0]
|
280 |
if params.debug_canny:
|
281 |
# paste control_image on top of result_image
|
|
|
160 |
controlnet_model, torch_dtype=torch_dtype
|
161 |
)
|
162 |
|
163 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
164 |
+
model_id,
|
165 |
+
safety_checker=None,
|
166 |
+
controlnet=controlnet_canny,
|
167 |
+
torch_dtype=torch_dtype,
|
168 |
+
)
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
self.pipe.load_lora_weights(
|
171 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")
|
|
|
264 |
control_guidance_end=params.controlnet_end,
|
265 |
)
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
result_image = results.images[0]
|
268 |
if params.debug_canny:
|
269 |
# paste control_image on top of result_image
|
server/pipelines/controlnetHyperSDXL.py
CHANGED
@@ -164,18 +164,13 @@ class Pipeline:
|
|
164 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
165 |
)
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
safety_checker=None,
|
175 |
-
controlnet=controlnet_canny,
|
176 |
-
vae=vae,
|
177 |
-
torch_dtype=torch_dtype,
|
178 |
-
)
|
179 |
|
180 |
self.pipe.load_lora_weights(
|
181 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
@@ -274,13 +269,6 @@ class Pipeline:
|
|
274 |
control_guidance_end=params.controlnet_end,
|
275 |
)
|
276 |
|
277 |
-
nsfw_content_detected = (
|
278 |
-
results.nsfw_content_detected[0]
|
279 |
-
if "nsfw_content_detected" in results
|
280 |
-
else False
|
281 |
-
)
|
282 |
-
if nsfw_content_detected:
|
283 |
-
return None
|
284 |
result_image = results.images[0]
|
285 |
if params.debug_canny:
|
286 |
# paste control_image on top of result_image
|
|
|
164 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
165 |
)
|
166 |
|
167 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
168 |
+
model_id,
|
169 |
+
safety_checker=None,
|
170 |
+
controlnet=controlnet_canny,
|
171 |
+
vae=vae,
|
172 |
+
torch_dtype=torch_dtype,
|
173 |
+
)
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
self.pipe.load_lora_weights(
|
176 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
|
|
269 |
control_guidance_end=params.controlnet_end,
|
270 |
)
|
271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
result_image = results.images[0]
|
273 |
if params.debug_canny:
|
274 |
# paste control_image on top of result_image
|
server/pipelines/controlnetLoraSD15.py
CHANGED
@@ -174,21 +174,13 @@ class Pipeline:
|
|
174 |
|
175 |
self.pipes = {}
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
else:
|
185 |
-
for base_model_id in base_models.keys():
|
186 |
-
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
187 |
-
base_model_id,
|
188 |
-
safety_checker=None,
|
189 |
-
controlnet=controlnet_canny,
|
190 |
-
)
|
191 |
-
self.pipes[base_model_id] = pipe
|
192 |
|
193 |
self.canny_torch = SobelOperator(device=device)
|
194 |
|
@@ -262,13 +254,6 @@ class Pipeline:
|
|
262 |
control_guidance_end=params.controlnet_end,
|
263 |
)
|
264 |
|
265 |
-
nsfw_content_detected = (
|
266 |
-
results.nsfw_content_detected[0]
|
267 |
-
if "nsfw_content_detected" in results
|
268 |
-
else False
|
269 |
-
)
|
270 |
-
if nsfw_content_detected:
|
271 |
-
return None
|
272 |
result_image = results.images[0]
|
273 |
if params.debug_canny:
|
274 |
# paste control_image on top of result_image
|
|
|
174 |
|
175 |
self.pipes = {}
|
176 |
|
177 |
+
for base_model_id in base_models.keys():
|
178 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
179 |
+
base_model_id,
|
180 |
+
safety_checker=None,
|
181 |
+
controlnet=controlnet_canny,
|
182 |
+
)
|
183 |
+
self.pipes[base_model_id] = pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
self.canny_torch = SobelOperator(device=device)
|
186 |
|
|
|
254 |
control_guidance_end=params.controlnet_end,
|
255 |
)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
result_image = results.images[0]
|
258 |
if params.debug_canny:
|
259 |
# paste control_image on top of result_image
|
server/pipelines/controlnetLoraSD15QRCode.py
CHANGED
@@ -154,11 +154,9 @@ class Pipeline:
|
|
154 |
controlnet=controlnet_qrcode,
|
155 |
)
|
156 |
|
157 |
-
self.control_image = Image.open(
|
158 |
-
"qr-code.png").convert("RGB").resize((512, 512))
|
159 |
|
160 |
-
self.pipe.scheduler = LCMScheduler.from_config(
|
161 |
-
self.pipe.scheduler.config)
|
162 |
self.pipe.set_progress_bar_config(disable=True)
|
163 |
if device.type != "mps":
|
164 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
@@ -206,9 +204,7 @@ class Pipeline:
|
|
206 |
steps = math.ceil(1 / max(0.10, strength))
|
207 |
|
208 |
blend_qr_image = Image.blend(
|
209 |
-
params.image,
|
210 |
-
self.control_image,
|
211 |
-
alpha=params.blend
|
212 |
)
|
213 |
results = self.pipe(
|
214 |
image=blend_qr_image,
|
@@ -227,13 +223,4 @@ class Pipeline:
|
|
227 |
control_guidance_end=params.controlnet_end,
|
228 |
)
|
229 |
|
230 |
-
|
231 |
-
results.nsfw_content_detected[0]
|
232 |
-
if "nsfw_content_detected" in results
|
233 |
-
else False
|
234 |
-
)
|
235 |
-
if nsfw_content_detected:
|
236 |
-
return None
|
237 |
-
result_image = results.images[0]
|
238 |
-
|
239 |
-
return result_image
|
|
|
154 |
controlnet=controlnet_qrcode,
|
155 |
)
|
156 |
|
157 |
+
self.control_image = Image.open("qr-code.png").convert("RGB").resize((512, 512))
|
|
|
158 |
|
159 |
+
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
|
|
160 |
self.pipe.set_progress_bar_config(disable=True)
|
161 |
if device.type != "mps":
|
162 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
|
|
204 |
steps = math.ceil(1 / max(0.10, strength))
|
205 |
|
206 |
blend_qr_image = Image.blend(
|
207 |
+
params.image, self.control_image, alpha=params.blend
|
|
|
|
|
208 |
)
|
209 |
results = self.pipe(
|
210 |
image=blend_qr_image,
|
|
|
223 |
control_guidance_end=params.controlnet_end,
|
224 |
)
|
225 |
|
226 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/controlnetLoraSDXL-Lightning.py
CHANGED
@@ -9,7 +9,6 @@ from diffusers import (
|
|
9 |
from compel import Compel, ReturnedEmbeddingsType
|
10 |
import torch
|
11 |
from pipelines.utils.canny_gpu import SobelOperator
|
12 |
-
from pipelines.utils.safety_checker import SafetyChecker
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
from safetensors.torch import load_file
|
15 |
|
@@ -169,10 +168,6 @@ class Pipeline:
|
|
169 |
)
|
170 |
|
171 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
172 |
-
self.safety_checker = None
|
173 |
-
if args.safety_checker:
|
174 |
-
self.safety_checker = SafetyChecker(device=device.type)
|
175 |
-
|
176 |
if args.taesd:
|
177 |
vae = AutoencoderTiny.from_pretrained(
|
178 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -290,13 +285,7 @@ class Pipeline:
|
|
290 |
control_guidance_start=params.controlnet_start,
|
291 |
control_guidance_end=params.controlnet_end,
|
292 |
)
|
293 |
-
|
294 |
-
if self.safety_checker:
|
295 |
-
images, has_nsfw_concepts = self.safety_checker(images)
|
296 |
-
if any(has_nsfw_concepts):
|
297 |
-
return None
|
298 |
-
|
299 |
-
result_image = images[0]
|
300 |
if params.debug_canny:
|
301 |
# paste control_image on top of result_image
|
302 |
w0, h0 = (200, 200)
|
|
|
9 |
from compel import Compel, ReturnedEmbeddingsType
|
10 |
import torch
|
11 |
from pipelines.utils.canny_gpu import SobelOperator
|
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from safetensors.torch import load_file
|
14 |
|
|
|
168 |
)
|
169 |
|
170 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
|
|
|
|
|
|
171 |
if args.taesd:
|
172 |
vae = AutoencoderTiny.from_pretrained(
|
173 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
285 |
control_guidance_start=params.controlnet_start,
|
286 |
control_guidance_end=params.controlnet_end,
|
287 |
)
|
288 |
+
result_image = results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
if params.debug_canny:
|
290 |
# paste control_image on top of result_image
|
291 |
w0, h0 = (200, 200)
|
server/pipelines/controlnetLoraSDXL.py
CHANGED
@@ -173,19 +173,12 @@ class Pipeline:
|
|
173 |
vae = AutoencoderKL.from_pretrained(
|
174 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
175 |
)
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
else:
|
183 |
-
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
184 |
-
model_id,
|
185 |
-
safety_checker=None,
|
186 |
-
controlnet=controlnet_canny,
|
187 |
-
vae=vae,
|
188 |
-
)
|
189 |
self.canny_torch = SobelOperator(device=device)
|
190 |
# Load LCM LoRA
|
191 |
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
@@ -196,8 +189,7 @@ class Pipeline:
|
|
196 |
)
|
197 |
self.pipe.set_adapters(["lcm", "toy"], adapter_weights=[1.0, 0.8])
|
198 |
|
199 |
-
self.pipe.scheduler = LCMScheduler.from_config(
|
200 |
-
self.pipe.scheduler.config)
|
201 |
self.pipe.set_progress_bar_config(disable=True)
|
202 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
203 |
|
@@ -219,8 +211,7 @@ class Pipeline:
|
|
219 |
if args.compel:
|
220 |
self.pipe.compel_proc = Compel(
|
221 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
222 |
-
text_encoder=[self.pipe.text_encoder,
|
223 |
-
self.pipe.text_encoder_2],
|
224 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
225 |
requires_pooled=[False, True],
|
226 |
)
|
@@ -292,13 +283,6 @@ class Pipeline:
|
|
292 |
control_guidance_end=params.controlnet_end,
|
293 |
)
|
294 |
|
295 |
-
nsfw_content_detected = (
|
296 |
-
results.nsfw_content_detected[0]
|
297 |
-
if "nsfw_content_detected" in results
|
298 |
-
else False
|
299 |
-
)
|
300 |
-
if nsfw_content_detected:
|
301 |
-
return None
|
302 |
result_image = results.images[0]
|
303 |
if params.debug_canny:
|
304 |
# paste control_image on top of result_image
|
|
|
173 |
vae = AutoencoderKL.from_pretrained(
|
174 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
175 |
)
|
176 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
177 |
+
model_id,
|
178 |
+
safety_checker=None,
|
179 |
+
controlnet=controlnet_canny,
|
180 |
+
vae=vae,
|
181 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
self.canny_torch = SobelOperator(device=device)
|
183 |
# Load LCM LoRA
|
184 |
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
|
|
189 |
)
|
190 |
self.pipe.set_adapters(["lcm", "toy"], adapter_weights=[1.0, 0.8])
|
191 |
|
192 |
+
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
|
|
193 |
self.pipe.set_progress_bar_config(disable=True)
|
194 |
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
195 |
|
|
|
211 |
if args.compel:
|
212 |
self.pipe.compel_proc = Compel(
|
213 |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
214 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
|
|
215 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
216 |
requires_pooled=[False, True],
|
217 |
)
|
|
|
283 |
control_guidance_end=params.controlnet_end,
|
284 |
)
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
result_image = results.images[0]
|
287 |
if params.debug_canny:
|
288 |
# paste control_image on top of result_image
|
server/pipelines/controlnetMistoLineHyperSDXL.py
CHANGED
@@ -166,18 +166,13 @@ class Pipeline:
|
|
166 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
167 |
)
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
safety_checker=None,
|
177 |
-
controlnet=controlnet_canny,
|
178 |
-
vae=vae,
|
179 |
-
torch_dtype=torch_dtype,
|
180 |
-
)
|
181 |
|
182 |
self.pipe.load_lora_weights(
|
183 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
@@ -282,13 +277,6 @@ class Pipeline:
|
|
282 |
control_guidance_end=params.controlnet_end,
|
283 |
)
|
284 |
|
285 |
-
nsfw_content_detected = (
|
286 |
-
results.nsfw_content_detected[0]
|
287 |
-
if "nsfw_content_detected" in results
|
288 |
-
else False
|
289 |
-
)
|
290 |
-
if nsfw_content_detected:
|
291 |
-
return None
|
292 |
result_image = results.images[0]
|
293 |
if params.debug_canny:
|
294 |
# paste control_image on top of result_image
|
|
|
166 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
167 |
)
|
168 |
|
169 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
170 |
+
model_id,
|
171 |
+
safety_checker=None,
|
172 |
+
controlnet=controlnet_canny,
|
173 |
+
vae=vae,
|
174 |
+
torch_dtype=torch_dtype,
|
175 |
+
)
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
self.pipe.load_lora_weights(
|
178 |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
|
|
|
277 |
control_guidance_end=params.controlnet_end,
|
278 |
)
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
result_image = results.images[0]
|
281 |
if params.debug_canny:
|
282 |
# paste control_image on top of result_image
|
server/pipelines/controlnetPCMSD15.py
CHANGED
@@ -140,17 +140,11 @@ class Pipeline:
|
|
140 |
controlnet_model, torch_dtype=torch_dtype
|
141 |
).to(device)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
else:
|
149 |
-
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
150 |
-
base_model_id,
|
151 |
-
safety_checker=None,
|
152 |
-
controlnet=controlnet_canny,
|
153 |
-
)
|
154 |
|
155 |
self.canny_torch = SobelOperator(device=device)
|
156 |
|
@@ -238,13 +232,6 @@ class Pipeline:
|
|
238 |
control_guidance_end=params.controlnet_end,
|
239 |
)
|
240 |
|
241 |
-
nsfw_content_detected = (
|
242 |
-
results.nsfw_content_detected[0]
|
243 |
-
if "nsfw_content_detected" in results
|
244 |
-
else False
|
245 |
-
)
|
246 |
-
if nsfw_content_detected:
|
247 |
-
return None
|
248 |
result_image = results.images[0]
|
249 |
if params.debug_canny:
|
250 |
# paste control_image on top of result_image
|
|
|
140 |
controlnet_model, torch_dtype=torch_dtype
|
141 |
).to(device)
|
142 |
|
143 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
144 |
+
base_model_id,
|
145 |
+
safety_checker=None,
|
146 |
+
controlnet=controlnet_canny,
|
147 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
self.canny_torch = SobelOperator(device=device)
|
150 |
|
|
|
232 |
control_guidance_end=params.controlnet_end,
|
233 |
)
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
result_image = results.images[0]
|
236 |
if params.debug_canny:
|
237 |
# paste control_image on top of result_image
|
server/pipelines/controlnetSDTurbo.py
CHANGED
@@ -7,7 +7,6 @@ from diffusers import (
|
|
7 |
from compel import Compel
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
10 |
-
from pipelines.utils.safety_checker import SafetyChecker
|
11 |
|
12 |
try:
|
13 |
import intel_extension_for_pytorch as ipex # type: ignore
|
@@ -162,10 +161,6 @@ class Pipeline:
|
|
162 |
)
|
163 |
self.pipes = {}
|
164 |
|
165 |
-
self.safety_checker = None
|
166 |
-
if args.safety_checker:
|
167 |
-
self.safety_checker = SafetyChecker(device=device.type)
|
168 |
-
|
169 |
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
170 |
base_model,
|
171 |
controlnet=controlnet_canny,
|
@@ -267,13 +262,7 @@ class Pipeline:
|
|
267 |
control_guidance_start=params.controlnet_start,
|
268 |
control_guidance_end=params.controlnet_end,
|
269 |
)
|
270 |
-
|
271 |
-
if self.safety_checker:
|
272 |
-
images, has_nsfw_concepts = self.safety_checker(images)
|
273 |
-
if any(has_nsfw_concepts):
|
274 |
-
return None
|
275 |
-
|
276 |
-
result_image = images[0]
|
277 |
if params.debug_canny:
|
278 |
# paste control_image on top of result_image
|
279 |
w0, h0 = (200, 200)
|
|
|
7 |
from compel import Compel
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
|
|
10 |
|
11 |
try:
|
12 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
|
161 |
)
|
162 |
self.pipes = {}
|
163 |
|
|
|
|
|
|
|
|
|
164 |
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
165 |
base_model,
|
166 |
controlnet=controlnet_canny,
|
|
|
262 |
control_guidance_start=params.controlnet_start,
|
263 |
control_guidance_end=params.controlnet_end,
|
264 |
)
|
265 |
+
result_image = results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
if params.debug_canny:
|
267 |
# paste control_image on top of result_image
|
268 |
w0, h0 = (200, 200)
|
server/pipelines/controlnetSDXLTurbo.py
CHANGED
@@ -7,7 +7,6 @@ from diffusers import (
|
|
7 |
from compel import Compel, ReturnedEmbeddingsType
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
10 |
-
from pipelines.utils.safety_checker import SafetyChecker
|
11 |
|
12 |
try:
|
13 |
import intel_extension_for_pytorch as ipex # type: ignore
|
@@ -171,9 +170,6 @@ class Pipeline:
|
|
171 |
vae = AutoencoderKL.from_pretrained(
|
172 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
173 |
)
|
174 |
-
self.safety_checker = None
|
175 |
-
if args.safety_checker:
|
176 |
-
self.safety_checker = SafetyChecker(device=device.type)
|
177 |
|
178 |
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
179 |
model_id,
|
@@ -274,14 +270,7 @@ class Pipeline:
|
|
274 |
control_guidance_start=params.controlnet_start,
|
275 |
control_guidance_end=params.controlnet_end,
|
276 |
)
|
277 |
-
|
278 |
-
images = results.images
|
279 |
-
if self.safety_checker:
|
280 |
-
images, has_nsfw_concepts = self.safety_checker(images)
|
281 |
-
if any(has_nsfw_concepts):
|
282 |
-
return None
|
283 |
-
|
284 |
-
result_image = images[0]
|
285 |
if params.debug_canny:
|
286 |
# paste control_image on top of result_image
|
287 |
w0, h0 = (200, 200)
|
|
|
7 |
from compel import Compel, ReturnedEmbeddingsType
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
|
|
10 |
|
11 |
try:
|
12 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
|
170 |
vae = AutoencoderKL.from_pretrained(
|
171 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
172 |
)
|
|
|
|
|
|
|
173 |
|
174 |
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
175 |
model_id,
|
|
|
270 |
control_guidance_start=params.controlnet_start,
|
271 |
control_guidance_end=params.controlnet_end,
|
272 |
)
|
273 |
+
result_image = results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
if params.debug_canny:
|
275 |
# paste control_image on top of result_image
|
276 |
w0, h0 = (200, 200)
|
server/pipelines/controlnetSegmindVegaRT.py
CHANGED
@@ -173,19 +173,12 @@ class Pipeline:
|
|
173 |
vae = AutoencoderKL.from_pretrained(
|
174 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
175 |
)
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
else:
|
183 |
-
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
184 |
-
base_model,
|
185 |
-
safety_checker=None,
|
186 |
-
controlnet=controlnet_canny,
|
187 |
-
vae=vae,
|
188 |
-
)
|
189 |
self.canny_torch = SobelOperator(device=device)
|
190 |
|
191 |
self.pipe.load_lora_weights(lora_model)
|
@@ -285,13 +278,6 @@ class Pipeline:
|
|
285 |
control_guidance_end=params.controlnet_end,
|
286 |
)
|
287 |
|
288 |
-
nsfw_content_detected = (
|
289 |
-
results.nsfw_content_detected[0]
|
290 |
-
if "nsfw_content_detected" in results
|
291 |
-
else False
|
292 |
-
)
|
293 |
-
if nsfw_content_detected:
|
294 |
-
return None
|
295 |
result_image = results.images[0]
|
296 |
if params.debug_canny:
|
297 |
# paste control_image on top of result_image
|
|
|
173 |
vae = AutoencoderKL.from_pretrained(
|
174 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
175 |
)
|
176 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
177 |
+
base_model,
|
178 |
+
safety_checker=None,
|
179 |
+
controlnet=controlnet_canny,
|
180 |
+
vae=vae,
|
181 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
self.canny_torch = SobelOperator(device=device)
|
183 |
|
184 |
self.pipe.load_lora_weights(lora_model)
|
|
|
278 |
control_guidance_end=params.controlnet_end,
|
279 |
)
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
result_image = results.images[0]
|
282 |
if params.debug_canny:
|
283 |
# paste control_image on top of result_image
|
server/pipelines/img2img.py
CHANGED
@@ -95,13 +95,10 @@ class Pipeline:
|
|
95 |
)
|
96 |
|
97 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
base_model,
|
103 |
-
safety_checker=None,
|
104 |
-
)
|
105 |
if args.taesd:
|
106 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -171,13 +168,4 @@ class Pipeline:
|
|
171 |
output_type="pil",
|
172 |
)
|
173 |
|
174 |
-
|
175 |
-
results.nsfw_content_detected[0]
|
176 |
-
if "nsfw_content_detected" in results
|
177 |
-
else False
|
178 |
-
)
|
179 |
-
if nsfw_content_detected:
|
180 |
-
return None
|
181 |
-
result_image = results.images[0]
|
182 |
-
|
183 |
-
return result_image
|
|
|
95 |
)
|
96 |
|
97 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
98 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
99 |
+
base_model,
|
100 |
+
safety_checker=None,
|
101 |
+
)
|
|
|
|
|
|
|
102 |
if args.taesd:
|
103 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
104 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
168 |
output_type="pil",
|
169 |
)
|
170 |
|
171 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/img2imgSDTurbo.py
CHANGED
@@ -93,13 +93,10 @@ class Pipeline:
|
|
93 |
)
|
94 |
|
95 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
base_model,
|
101 |
-
safety_checker=None,
|
102 |
-
)
|
103 |
if args.taesd:
|
104 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
105 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -187,13 +184,4 @@ class Pipeline:
|
|
187 |
output_type="pil",
|
188 |
)
|
189 |
|
190 |
-
|
191 |
-
results.nsfw_content_detected[0]
|
192 |
-
if "nsfw_content_detected" in results
|
193 |
-
else False
|
194 |
-
)
|
195 |
-
if nsfw_content_detected:
|
196 |
-
return None
|
197 |
-
result_image = results.images[0]
|
198 |
-
|
199 |
-
return result_image
|
|
|
93 |
)
|
94 |
|
95 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
96 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
97 |
+
base_model,
|
98 |
+
safety_checker=None,
|
99 |
+
)
|
|
|
|
|
|
|
100 |
if args.taesd:
|
101 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
102 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
184 |
output_type="pil",
|
185 |
)
|
186 |
|
187 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/img2imgSDXL-Lightning.py
CHANGED
@@ -110,7 +110,6 @@ class Pipeline:
|
|
110 |
)
|
111 |
|
112 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
113 |
-
|
114 |
if args.taesd:
|
115 |
vae = AutoencoderTiny.from_pretrained(
|
116 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -214,13 +213,4 @@ class Pipeline:
|
|
214 |
output_type="pil",
|
215 |
)
|
216 |
|
217 |
-
|
218 |
-
results.nsfw_content_detected[0]
|
219 |
-
if "nsfw_content_detected" in results
|
220 |
-
else False
|
221 |
-
)
|
222 |
-
if nsfw_content_detected:
|
223 |
-
return None
|
224 |
-
result_image = results.images[0]
|
225 |
-
|
226 |
-
return result_image
|
|
|
110 |
)
|
111 |
|
112 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
113 |
if args.taesd:
|
114 |
vae = AutoencoderTiny.from_pretrained(
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
213 |
output_type="pil",
|
214 |
)
|
215 |
|
216 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/img2imgSDXLTurbo.py
CHANGED
@@ -103,13 +103,10 @@ class Pipeline:
|
|
103 |
)
|
104 |
|
105 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
base_model,
|
111 |
-
safety_checker=None,
|
112 |
-
)
|
113 |
if args.taesd:
|
114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -194,13 +191,4 @@ class Pipeline:
|
|
194 |
output_type="pil",
|
195 |
)
|
196 |
|
197 |
-
|
198 |
-
results.nsfw_content_detected[0]
|
199 |
-
if "nsfw_content_detected" in results
|
200 |
-
else False
|
201 |
-
)
|
202 |
-
if nsfw_content_detected:
|
203 |
-
return None
|
204 |
-
result_image = results.images[0]
|
205 |
-
|
206 |
-
return result_image
|
|
|
103 |
)
|
104 |
|
105 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
106 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
107 |
+
base_model,
|
108 |
+
safety_checker=None,
|
109 |
+
)
|
|
|
|
|
|
|
110 |
if args.taesd:
|
111 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
112 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
191 |
output_type="pil",
|
192 |
)
|
193 |
|
194 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/img2imgSDXS512.py
CHANGED
@@ -92,13 +92,10 @@ class Pipeline:
|
|
92 |
)
|
93 |
|
94 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
base_model,
|
100 |
-
safety_checker=None,
|
101 |
-
)
|
102 |
if args.taesd:
|
103 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
104 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -162,14 +159,4 @@ class Pipeline:
|
|
162 |
height=params.height,
|
163 |
output_type="pil",
|
164 |
)
|
165 |
-
|
166 |
-
nsfw_content_detected = (
|
167 |
-
results.nsfw_content_detected[0]
|
168 |
-
if "nsfw_content_detected" in results
|
169 |
-
else False
|
170 |
-
)
|
171 |
-
if nsfw_content_detected:
|
172 |
-
return None
|
173 |
-
result_image = results.images[0]
|
174 |
-
|
175 |
-
return result_image
|
|
|
92 |
)
|
93 |
|
94 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
95 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
96 |
+
base_model,
|
97 |
+
safety_checker=None,
|
98 |
+
)
|
|
|
|
|
|
|
99 |
if args.taesd:
|
100 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
101 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
159 |
height=params.height,
|
160 |
output_type="pil",
|
161 |
)
|
162 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/img2imgSegmindVegaRT.py
CHANGED
@@ -105,17 +105,11 @@ class Pipeline:
|
|
105 |
)
|
106 |
|
107 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
else:
|
114 |
-
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
115 |
-
base_model,
|
116 |
-
safety_checker=None,
|
117 |
-
variant="fp16",
|
118 |
-
)
|
119 |
if args.taesd:
|
120 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
121 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -205,13 +199,4 @@ class Pipeline:
|
|
205 |
output_type="pil",
|
206 |
)
|
207 |
|
208 |
-
|
209 |
-
results.nsfw_content_detected[0]
|
210 |
-
if "nsfw_content_detected" in results
|
211 |
-
else False
|
212 |
-
)
|
213 |
-
if nsfw_content_detected:
|
214 |
-
return None
|
215 |
-
result_image = results.images[0]
|
216 |
-
|
217 |
-
return result_image
|
|
|
105 |
)
|
106 |
|
107 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
108 |
+
self.pipe = AutoPipelineForImage2Image.from_pretrained(
|
109 |
+
base_model,
|
110 |
+
safety_checker=None,
|
111 |
+
variant="fp16",
|
112 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
if args.taesd:
|
114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
199 |
output_type="pil",
|
200 |
)
|
201 |
|
202 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/txt2img.py
CHANGED
@@ -79,12 +79,7 @@ class Pipeline:
|
|
79 |
)
|
80 |
|
81 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
82 |
-
|
83 |
-
self.pipe = DiffusionPipeline.from_pretrained(base_model)
|
84 |
-
else:
|
85 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
86 |
-
base_model, safety_checker=None
|
87 |
-
)
|
88 |
if args.taesd:
|
89 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -142,11 +137,5 @@ class Pipeline:
|
|
142 |
height=params.height,
|
143 |
output_type="pil",
|
144 |
)
|
145 |
-
|
146 |
-
results.nsfw_content_detected[0]
|
147 |
-
if "nsfw_content_detected" in results
|
148 |
-
else False
|
149 |
-
)
|
150 |
-
if nsfw_content_detected:
|
151 |
-
return None
|
152 |
return results.images[0]
|
|
|
79 |
)
|
80 |
|
81 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
82 |
+
self.pipe = DiffusionPipeline.from_pretrained(base_model, safety_checker=None)
|
|
|
|
|
|
|
|
|
|
|
83 |
if args.taesd:
|
84 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
85 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
137 |
height=params.height,
|
138 |
output_type="pil",
|
139 |
)
|
140 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
return results.images[0]
|
server/pipelines/txt2imgLora.py
CHANGED
@@ -86,12 +86,7 @@ class Pipeline:
|
|
86 |
)
|
87 |
|
88 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
89 |
-
|
90 |
-
self.pipe = DiffusionPipeline.from_pretrained(base_model)
|
91 |
-
else:
|
92 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
93 |
-
base_model, safety_checker=None
|
94 |
-
)
|
95 |
if args.taesd:
|
96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -152,11 +147,5 @@ class Pipeline:
|
|
152 |
height=params.height,
|
153 |
output_type="pil",
|
154 |
)
|
155 |
-
|
156 |
-
results.nsfw_content_detected[0]
|
157 |
-
if "nsfw_content_detected" in results
|
158 |
-
else False
|
159 |
-
)
|
160 |
-
if nsfw_content_detected:
|
161 |
-
return None
|
162 |
return results.images[0]
|
|
|
86 |
)
|
87 |
|
88 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
89 |
+
self.pipe = DiffusionPipeline.from_pretrained(base_model, safety_checker=None)
|
|
|
|
|
|
|
|
|
|
|
90 |
if args.taesd:
|
91 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
92 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
147 |
height=params.height,
|
148 |
output_type="pil",
|
149 |
)
|
150 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
return results.images[0]
|
server/pipelines/txt2imgLoraSDXL.py
CHANGED
@@ -95,17 +95,12 @@ class Pipeline:
|
|
95 |
vae = AutoencoderKL.from_pretrained(
|
96 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
97 |
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
105 |
-
model_id,
|
106 |
-
safety_checker=None,
|
107 |
-
vae=vae,
|
108 |
-
)
|
109 |
# Load LCM LoRA
|
110 |
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
111 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
@@ -184,13 +179,4 @@ class Pipeline:
|
|
184 |
output_type="pil",
|
185 |
)
|
186 |
|
187 |
-
|
188 |
-
results.nsfw_content_detected[0]
|
189 |
-
if "nsfw_content_detected" in results
|
190 |
-
else False
|
191 |
-
)
|
192 |
-
if nsfw_content_detected:
|
193 |
-
return None
|
194 |
-
result_image = results.images[0]
|
195 |
-
|
196 |
-
return result_image
|
|
|
95 |
vae = AutoencoderKL.from_pretrained(
|
96 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
97 |
)
|
98 |
+
|
99 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
100 |
+
model_id,
|
101 |
+
safety_checker=None,
|
102 |
+
vae=vae,
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
104 |
# Load LCM LoRA
|
105 |
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
106 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
|
|
179 |
output_type="pil",
|
180 |
)
|
181 |
|
182 |
+
return results.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server/pipelines/utils/safety_checker.py
CHANGED
@@ -150,14 +150,20 @@ class SafetyChecker:
|
|
150 |
)
|
151 |
|
152 |
def __call__(
|
153 |
-
self, images: list[Image.Image]
|
154 |
-
) -> tuple[list[Image.Image], list[bool]]:
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
158 |
has_nsfw_concepts = self.safety_checker(
|
159 |
-
images=[
|
160 |
clip_input=safety_checker_input.pixel_values.to(self.device),
|
161 |
)
|
162 |
|
|
|
|
|
|
|
163 |
return images, has_nsfw_concepts
|
|
|
150 |
)
|
151 |
|
152 |
def __call__(
|
153 |
+
self, images: list[Image.Image] | Image.Image
|
154 |
+
) -> tuple[list[Image.Image], list[bool]] | tuple[Image.Image, bool]:
|
155 |
+
images_list = [images] if isinstance(images, Image.Image) else images
|
156 |
+
|
157 |
+
safety_checker_input = self.feature_extractor(
|
158 |
+
images_list, return_tensors="pt"
|
159 |
+
).to(self.device)
|
160 |
+
|
161 |
has_nsfw_concepts = self.safety_checker(
|
162 |
+
images=[images_list],
|
163 |
clip_input=safety_checker_input.pixel_values.to(self.device),
|
164 |
)
|
165 |
|
166 |
+
if isinstance(images, Image.Image):
|
167 |
+
return images, has_nsfw_concepts[0]
|
168 |
+
|
169 |
return images, has_nsfw_concepts
|