PCM : Phased Consistency Model controlnet
Browse files
server/pipelines/controlnetPCMSD15.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
3 |
+
ControlNetModel,
|
4 |
+
TCDScheduler,
|
5 |
+
AutoencoderTiny,
|
6 |
+
)
|
7 |
+
from compel import Compel
|
8 |
+
import torch
|
9 |
+
from pipelines.utils.canny_gpu import SobelOperator
|
10 |
+
|
11 |
+
try:
|
12 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
13 |
+
except:
|
14 |
+
pass
|
15 |
+
|
16 |
+
from config import Args
|
17 |
+
from pydantic import BaseModel, Field
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
taesd_model = "madebyollin/taesd"
|
21 |
+
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
22 |
+
base_model_id = "runwayml/stable-diffusion-v1-5"
|
23 |
+
pcm_base = "wangfuyun/PCM_Weights"
|
24 |
+
pcm_lora_ckpts = {
|
25 |
+
"2-Step": ["pcm_sd15_smallcfg_2step_converted.safetensors", 2, 0.0],
|
26 |
+
"4-Step": ["pcm_sd15_smallcfg_4step_converted.safetensors", 4, 0.0],
|
27 |
+
"8-Step": ["pcm_sd15_smallcfg_8step_converted.safetensors", 8, 0.0],
|
28 |
+
"16-Step": ["pcm_sd15_smallcfg_16step_converted.safetensors", 16, 0.0],
|
29 |
+
"Normal CFG 4-Step": ["pcm_sd15_normalcfg_4step_converted.safetensors", 4, 7.5],
|
30 |
+
"Normal CFG 8-Step": ["pcm_sd15_normalcfg_8step_converted.safetensors", 8, 7.5],
|
31 |
+
"Normal CFG 16-Step": ["pcm_sd15_normalcfg_16step_converted.safetensors", 16, 7.5],
|
32 |
+
}
|
33 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
34 |
+
page_content = """
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class Pipeline:
|
40 |
+
class Info(BaseModel):
|
41 |
+
name: str = "controlnet+loras+sd15"
|
42 |
+
title: str = "LCM + LoRA + Controlnet"
|
43 |
+
description: str = "Generates an image from a text prompt"
|
44 |
+
input_mode: str = "image"
|
45 |
+
page_content: str = page_content
|
46 |
+
|
47 |
+
class InputParams(BaseModel):
|
48 |
+
prompt: str = Field(
|
49 |
+
default_prompt,
|
50 |
+
title="Prompt",
|
51 |
+
field="textarea",
|
52 |
+
id="prompt",
|
53 |
+
)
|
54 |
+
lora_ckpt_id: str = Field(
|
55 |
+
"4-Step",
|
56 |
+
title="PCM Base Model",
|
57 |
+
values=list(pcm_lora_ckpts.keys()),
|
58 |
+
field="select",
|
59 |
+
id="lora_ckpt_id",
|
60 |
+
)
|
61 |
+
seed: int = Field(
|
62 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
63 |
+
)
|
64 |
+
width: int = Field(
|
65 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
66 |
+
)
|
67 |
+
height: int = Field(
|
68 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
69 |
+
)
|
70 |
+
strength: float = Field(
|
71 |
+
0.5,
|
72 |
+
min=0.25,
|
73 |
+
max=1.0,
|
74 |
+
step=0.001,
|
75 |
+
title="Strength",
|
76 |
+
field="range",
|
77 |
+
hide=True,
|
78 |
+
id="strength",
|
79 |
+
)
|
80 |
+
controlnet_scale: float = Field(
|
81 |
+
0.8,
|
82 |
+
min=0,
|
83 |
+
max=1.0,
|
84 |
+
step=0.001,
|
85 |
+
title="Controlnet Scale",
|
86 |
+
field="range",
|
87 |
+
hide=True,
|
88 |
+
id="controlnet_scale",
|
89 |
+
)
|
90 |
+
controlnet_start: float = Field(
|
91 |
+
0.0,
|
92 |
+
min=0,
|
93 |
+
max=1.0,
|
94 |
+
step=0.001,
|
95 |
+
title="Controlnet Start",
|
96 |
+
field="range",
|
97 |
+
hide=True,
|
98 |
+
id="controlnet_start",
|
99 |
+
)
|
100 |
+
controlnet_end: float = Field(
|
101 |
+
1.0,
|
102 |
+
min=0,
|
103 |
+
max=1.0,
|
104 |
+
step=0.001,
|
105 |
+
title="Controlnet End",
|
106 |
+
field="range",
|
107 |
+
hide=True,
|
108 |
+
id="controlnet_end",
|
109 |
+
)
|
110 |
+
canny_low_threshold: float = Field(
|
111 |
+
0.31,
|
112 |
+
min=0,
|
113 |
+
max=1.0,
|
114 |
+
step=0.001,
|
115 |
+
title="Canny Low Threshold",
|
116 |
+
field="range",
|
117 |
+
hide=True,
|
118 |
+
id="canny_low_threshold",
|
119 |
+
)
|
120 |
+
canny_high_threshold: float = Field(
|
121 |
+
0.125,
|
122 |
+
min=0,
|
123 |
+
max=1.0,
|
124 |
+
step=0.001,
|
125 |
+
title="Canny High Threshold",
|
126 |
+
field="range",
|
127 |
+
hide=True,
|
128 |
+
id="canny_high_threshold",
|
129 |
+
)
|
130 |
+
debug_canny: bool = Field(
|
131 |
+
False,
|
132 |
+
title="Debug Canny",
|
133 |
+
field="checkbox",
|
134 |
+
hide=True,
|
135 |
+
id="debug_canny",
|
136 |
+
)
|
137 |
+
|
138 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
139 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
140 |
+
controlnet_model, torch_dtype=torch_dtype
|
141 |
+
).to(device)
|
142 |
+
|
143 |
+
if args.safety_checker:
|
144 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
145 |
+
base_model_id,
|
146 |
+
controlnet=controlnet_canny,
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
150 |
+
base_model_id,
|
151 |
+
safety_checker=None,
|
152 |
+
controlnet=controlnet_canny,
|
153 |
+
)
|
154 |
+
|
155 |
+
self.canny_torch = SobelOperator(device=device)
|
156 |
+
|
157 |
+
self.pipe.scheduler = TCDScheduler(
|
158 |
+
num_train_timesteps=1000,
|
159 |
+
beta_start=0.00085,
|
160 |
+
beta_end=0.012,
|
161 |
+
beta_schedule="scaled_linear",
|
162 |
+
timestep_spacing="trailing",
|
163 |
+
)
|
164 |
+
|
165 |
+
self.pipe.set_progress_bar_config(disable=True)
|
166 |
+
if device.type != "mps":
|
167 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
168 |
+
|
169 |
+
if args.taesd:
|
170 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
171 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
172 |
+
).to(device)
|
173 |
+
|
174 |
+
self.loaded_lora = "4-Step"
|
175 |
+
self.pipe.load_lora_weights(
|
176 |
+
pcm_base,
|
177 |
+
weight_name=pcm_lora_ckpts[self.loaded_lora][0],
|
178 |
+
subfolder="sd15",
|
179 |
+
)
|
180 |
+
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
181 |
+
if args.compel:
|
182 |
+
self.compel_proc = Compel(
|
183 |
+
tokenizer=self.pipe.tokenizer,
|
184 |
+
text_encoder=self.pipe.text_encoder,
|
185 |
+
truncate_long_prompts=False,
|
186 |
+
)
|
187 |
+
if args.torch_compile:
|
188 |
+
self.pipe.unet = torch.compile(
|
189 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
190 |
+
)
|
191 |
+
self.pipe.vae = torch.compile(
|
192 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
193 |
+
)
|
194 |
+
self.pipe(
|
195 |
+
prompt="warmup",
|
196 |
+
image=[Image.new("RGB", (768, 768))],
|
197 |
+
control_image=[Image.new("RGB", (768, 768))],
|
198 |
+
)
|
199 |
+
|
200 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
201 |
+
generator = torch.manual_seed(params.seed)
|
202 |
+
guidance_scale = pcm_lora_ckpts[params.lora_ckpt_id][2]
|
203 |
+
steps = pcm_lora_ckpts[params.lora_ckpt_id][1]
|
204 |
+
|
205 |
+
if self.loaded_lora != params.lora_ckpt_id:
|
206 |
+
checkpoint = pcm_lora_ckpts[params.lora_ckpt_id][0]
|
207 |
+
self.pipe.load_lora_weights(
|
208 |
+
pcm_base,
|
209 |
+
weight_name=checkpoint,
|
210 |
+
subfolder="sd15",
|
211 |
+
)
|
212 |
+
self.loaded_lora = params.lora_ckpt_id
|
213 |
+
|
214 |
+
prompt_embeds = None
|
215 |
+
prompt = params.prompt
|
216 |
+
if hasattr(self, "compel_proc"):
|
217 |
+
prompt_embeds = self.compel_proc(prompt)
|
218 |
+
prompt = None
|
219 |
+
control_image = self.canny_torch(
|
220 |
+
params.image, params.canny_low_threshold, params.canny_high_threshold
|
221 |
+
)
|
222 |
+
strength = params.strength
|
223 |
+
|
224 |
+
results = self.pipe(
|
225 |
+
image=params.image,
|
226 |
+
control_image=control_image,
|
227 |
+
prompt=prompt,
|
228 |
+
prompt_embeds=prompt_embeds,
|
229 |
+
generator=generator,
|
230 |
+
strength=strength,
|
231 |
+
num_inference_steps=steps,
|
232 |
+
guidance_scale=guidance_scale,
|
233 |
+
width=params.width,
|
234 |
+
height=params.height,
|
235 |
+
output_type="pil",
|
236 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
237 |
+
control_guidance_start=params.controlnet_start,
|
238 |
+
control_guidance_end=params.controlnet_end,
|
239 |
+
)
|
240 |
+
|
241 |
+
nsfw_content_detected = (
|
242 |
+
results.nsfw_content_detected[0]
|
243 |
+
if "nsfw_content_detected" in results
|
244 |
+
else False
|
245 |
+
)
|
246 |
+
if nsfw_content_detected:
|
247 |
+
return None
|
248 |
+
result_image = results.images[0]
|
249 |
+
if params.debug_canny:
|
250 |
+
# paste control_image on top of result_image
|
251 |
+
w0, h0 = (200, 200)
|
252 |
+
control_image = control_image.resize((w0, h0))
|
253 |
+
w1, h1 = result_image.size
|
254 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
255 |
+
|
256 |
+
return result_image
|