safety checker
Browse files
server/pipelines/controlnetLoraSDXL-Lightning.py
CHANGED
@@ -9,6 +9,7 @@ from diffusers import (
|
|
9 |
from compel import Compel, ReturnedEmbeddingsType
|
10 |
import torch
|
11 |
from pipelines.utils.canny_gpu import SobelOperator
|
|
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from safetensors.torch import load_file
|
14 |
|
@@ -17,7 +18,6 @@ try:
|
|
17 |
except:
|
18 |
pass
|
19 |
|
20 |
-
import psutil
|
21 |
from config import Args
|
22 |
from pydantic import BaseModel, Field
|
23 |
from PIL import Image
|
@@ -35,7 +35,7 @@ default_prompt = "Portrait of The Terminator with , glare pose, detailed, intric
|
|
35 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
36 |
page_content = """
|
37 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDXL</h1>
|
38 |
-
<h3 class="text-xl font-bold">SDXL-Lightining +
|
39 |
<p class="text-sm">
|
40 |
This demo showcases
|
41 |
<a
|
@@ -84,9 +84,6 @@ class Pipeline:
|
|
84 |
seed: int = Field(
|
85 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
86 |
)
|
87 |
-
steps: int = Field(
|
88 |
-
1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
|
89 |
-
)
|
90 |
width: int = Field(
|
91 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
92 |
)
|
@@ -172,6 +169,8 @@ class Pipeline:
|
|
172 |
)
|
173 |
|
174 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
|
|
175 |
|
176 |
if args.taesd:
|
177 |
vae = AutoencoderTiny.from_pretrained(
|
@@ -204,7 +203,7 @@ class Pipeline:
|
|
204 |
|
205 |
self.canny_torch = SobelOperator(device=device)
|
206 |
self.pipe.set_progress_bar_config(disable=True)
|
207 |
-
self.pipe.to(device=device, dtype=torch_dtype)
|
208 |
|
209 |
if args.sfast:
|
210 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
@@ -242,7 +241,7 @@ class Pipeline:
|
|
242 |
control_image=[Image.new("RGB", (768, 768))],
|
243 |
)
|
244 |
|
245 |
-
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
246 |
generator = torch.manual_seed(params.seed)
|
247 |
|
248 |
prompt = params.prompt
|
@@ -265,7 +264,7 @@ class Pipeline:
|
|
265 |
control_image = self.canny_torch(
|
266 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
267 |
)
|
268 |
-
steps =
|
269 |
strength = params.strength
|
270 |
if int(steps * strength) < 1:
|
271 |
steps = math.ceil(1 / max(0.10, strength))
|
@@ -281,7 +280,7 @@ class Pipeline:
|
|
281 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
282 |
generator=generator,
|
283 |
strength=strength,
|
284 |
-
num_inference_steps=
|
285 |
guidance_scale=params.guidance_scale,
|
286 |
width=params.width,
|
287 |
height=params.height,
|
@@ -290,14 +289,13 @@ class Pipeline:
|
|
290 |
control_guidance_start=params.controlnet_start,
|
291 |
control_guidance_end=params.controlnet_end,
|
292 |
)
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
)
|
299 |
-
if nsfw_content_detected:
|
300 |
return None
|
|
|
301 |
result_image = results.images[0]
|
302 |
if params.debug_canny:
|
303 |
# paste control_image on top of result_image
|
|
|
9 |
from compel import Compel, ReturnedEmbeddingsType
|
10 |
import torch
|
11 |
from pipelines.utils.canny_gpu import SobelOperator
|
12 |
+
from pipelines.utils.safety_checker import SafetyChecker
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
from safetensors.torch import load_file
|
15 |
|
|
|
18 |
except:
|
19 |
pass
|
20 |
|
|
|
21 |
from config import Args
|
22 |
from pydantic import BaseModel, Field
|
23 |
from PIL import Image
|
|
|
35 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
36 |
page_content = """
|
37 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDXL</h1>
|
38 |
+
<h3 class="text-xl font-bold">SDXL-Lightining + Controlnet</h3>
|
39 |
<p class="text-sm">
|
40 |
This demo showcases
|
41 |
<a
|
|
|
84 |
seed: int = Field(
|
85 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
86 |
)
|
|
|
|
|
|
|
87 |
width: int = Field(
|
88 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
89 |
)
|
|
|
169 |
)
|
170 |
|
171 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
172 |
+
if args.safety_checker:
|
173 |
+
self.safety_checker = SafetyChecker(device=device.type)
|
174 |
|
175 |
if args.taesd:
|
176 |
vae = AutoencoderTiny.from_pretrained(
|
|
|
203 |
|
204 |
self.canny_torch = SobelOperator(device=device)
|
205 |
self.pipe.set_progress_bar_config(disable=True)
|
206 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
207 |
|
208 |
if args.sfast:
|
209 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
|
|
241 |
control_image=[Image.new("RGB", (768, 768))],
|
242 |
)
|
243 |
|
244 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image | None:
|
245 |
generator = torch.manual_seed(params.seed)
|
246 |
|
247 |
prompt = params.prompt
|
|
|
264 |
control_image = self.canny_torch(
|
265 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
266 |
)
|
267 |
+
steps = NUM_STEPS
|
268 |
strength = params.strength
|
269 |
if int(steps * strength) < 1:
|
270 |
steps = math.ceil(1 / max(0.10, strength))
|
|
|
280 |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
281 |
generator=generator,
|
282 |
strength=strength,
|
283 |
+
num_inference_steps=NUM_STEPS,
|
284 |
guidance_scale=params.guidance_scale,
|
285 |
width=params.width,
|
286 |
height=params.height,
|
|
|
289 |
control_guidance_start=params.controlnet_start,
|
290 |
control_guidance_end=params.controlnet_end,
|
291 |
)
|
292 |
+
images = results.images
|
293 |
+
if self.safety_checker:
|
294 |
+
images, has_nsfw_concepts = self.safety_checker(images)
|
295 |
+
print(has_nsfw_concepts)
|
296 |
+
if any(has_nsfw_concepts):
|
|
|
|
|
297 |
return None
|
298 |
+
|
299 |
result_image = results.images[0]
|
300 |
if params.debug_canny:
|
301 |
# paste control_image on top of result_image
|
server/pipelines/utils/safety_checker.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
|
21 |
+
def cosine_distance(image_embeds, text_embeds):
|
22 |
+
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
23 |
+
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
24 |
+
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
|
25 |
+
|
26 |
+
|
27 |
+
class StableDiffusionSafetyChecker(PreTrainedModel):
|
28 |
+
config_class = CLIPConfig
|
29 |
+
|
30 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
31 |
+
|
32 |
+
def __init__(self, config: CLIPConfig):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.vision_model = CLIPVisionModel(config.vision_config)
|
36 |
+
self.visual_projection = nn.Linear(
|
37 |
+
config.vision_config.hidden_size, config.projection_dim, bias=False
|
38 |
+
)
|
39 |
+
|
40 |
+
self.concept_embeds = nn.Parameter(
|
41 |
+
torch.ones(17, config.projection_dim), requires_grad=False
|
42 |
+
)
|
43 |
+
self.special_care_embeds = nn.Parameter(
|
44 |
+
torch.ones(3, config.projection_dim), requires_grad=False
|
45 |
+
)
|
46 |
+
|
47 |
+
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
|
48 |
+
self.special_care_embeds_weights = nn.Parameter(
|
49 |
+
torch.ones(3), requires_grad=False
|
50 |
+
)
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def forward(self, clip_input, images):
|
54 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
55 |
+
image_embeds = self.visual_projection(pooled_output)
|
56 |
+
|
57 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
58 |
+
special_cos_dist = (
|
59 |
+
cosine_distance(image_embeds, self.special_care_embeds)
|
60 |
+
.cpu()
|
61 |
+
.float()
|
62 |
+
.numpy()
|
63 |
+
)
|
64 |
+
cos_dist = (
|
65 |
+
cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
66 |
+
)
|
67 |
+
|
68 |
+
result = []
|
69 |
+
batch_size = image_embeds.shape[0]
|
70 |
+
for i in range(batch_size):
|
71 |
+
result_img = {
|
72 |
+
"special_scores": {},
|
73 |
+
"special_care": [],
|
74 |
+
"concept_scores": {},
|
75 |
+
"bad_concepts": [],
|
76 |
+
}
|
77 |
+
|
78 |
+
# increase this value to create a stronger `nfsw` filter
|
79 |
+
# at the cost of increasing the possibility of filtering benign images
|
80 |
+
adjustment = 0.0
|
81 |
+
|
82 |
+
for concept_idx in range(len(special_cos_dist[0])):
|
83 |
+
concept_cos = special_cos_dist[i][concept_idx]
|
84 |
+
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
85 |
+
result_img["special_scores"][concept_idx] = round(
|
86 |
+
concept_cos - concept_threshold + adjustment, 3
|
87 |
+
)
|
88 |
+
if result_img["special_scores"][concept_idx] > 0:
|
89 |
+
result_img["special_care"].append(
|
90 |
+
{concept_idx, result_img["special_scores"][concept_idx]}
|
91 |
+
)
|
92 |
+
adjustment = 0.01
|
93 |
+
|
94 |
+
for concept_idx in range(len(cos_dist[0])):
|
95 |
+
concept_cos = cos_dist[i][concept_idx]
|
96 |
+
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
97 |
+
result_img["concept_scores"][concept_idx] = round(
|
98 |
+
concept_cos - concept_threshold + adjustment, 3
|
99 |
+
)
|
100 |
+
if result_img["concept_scores"][concept_idx] > 0:
|
101 |
+
result_img["bad_concepts"].append(concept_idx)
|
102 |
+
|
103 |
+
result.append(result_img)
|
104 |
+
|
105 |
+
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
106 |
+
|
107 |
+
return has_nsfw_concepts
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
|
111 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
112 |
+
image_embeds = self.visual_projection(pooled_output)
|
113 |
+
|
114 |
+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
|
115 |
+
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
|
116 |
+
|
117 |
+
# increase this value to create a stronger `nsfw` filter
|
118 |
+
# at the cost of increasing the possibility of filtering benign images
|
119 |
+
adjustment = 0.0
|
120 |
+
|
121 |
+
special_scores = (
|
122 |
+
special_cos_dist - self.special_care_embeds_weights + adjustment
|
123 |
+
)
|
124 |
+
# special_scores = special_scores.round(decimals=3)
|
125 |
+
special_care = torch.any(special_scores > 0, dim=1)
|
126 |
+
special_adjustment = special_care * 0.01
|
127 |
+
special_adjustment = special_adjustment.unsqueeze(1).expand(
|
128 |
+
-1, cos_dist.shape[1]
|
129 |
+
)
|
130 |
+
|
131 |
+
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
|
132 |
+
# concept_scores = concept_scores.round(decimals=3)
|
133 |
+
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
|
134 |
+
|
135 |
+
images[has_nsfw_concepts] = 0.0 # black image
|
136 |
+
|
137 |
+
return images, has_nsfw_concepts
|
138 |
+
|
139 |
+
|
140 |
+
class SafetyChecker:
|
141 |
+
def __init__(self, device="cuda"):
|
142 |
+
from transformers import CLIPFeatureExtractor
|
143 |
+
|
144 |
+
self.device = device
|
145 |
+
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
146 |
+
"CompVis/stable-diffusion-safety-checker"
|
147 |
+
).to(device)
|
148 |
+
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
149 |
+
"openai/clip-vit-base-patch32"
|
150 |
+
)
|
151 |
+
|
152 |
+
def __call__(
|
153 |
+
self, images: list[Image.Image]
|
154 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
155 |
+
safety_checker_input = self.feature_extractor(images, return_tensors="pt").to(
|
156 |
+
self.device
|
157 |
+
)
|
158 |
+
has_nsfw_concepts = self.safety_checker(
|
159 |
+
images=[images],
|
160 |
+
clip_input=safety_checker_input.pixel_values.to(self.device),
|
161 |
+
)
|
162 |
+
|
163 |
+
return images, has_nsfw_concepts
|