radames commited on
Commit
947c4f5
·
1 Parent(s): e13bdf0

safety checker

Browse files
server/pipelines/controlnetLoraSDXL-Lightning.py CHANGED
@@ -9,6 +9,7 @@ from diffusers import (
9
  from compel import Compel, ReturnedEmbeddingsType
10
  import torch
11
  from pipelines.utils.canny_gpu import SobelOperator
 
12
  from huggingface_hub import hf_hub_download
13
  from safetensors.torch import load_file
14
 
@@ -17,7 +18,6 @@ try:
17
  except:
18
  pass
19
 
20
- import psutil
21
  from config import Args
22
  from pydantic import BaseModel, Field
23
  from PIL import Image
@@ -35,7 +35,7 @@ default_prompt = "Portrait of The Terminator with , glare pose, detailed, intric
35
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
36
  page_content = """
37
  <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDXL</h1>
38
- <h3 class="text-xl font-bold">SDXL-Lightining + LCM + LoRA + Controlnet</h3>
39
  <p class="text-sm">
40
  This demo showcases
41
  <a
@@ -84,9 +84,6 @@ class Pipeline:
84
  seed: int = Field(
85
  2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
86
  )
87
- steps: int = Field(
88
- 1, min=1, max=10, title="Steps", field="range", hide=True, id="steps"
89
- )
90
  width: int = Field(
91
  1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
92
  )
@@ -172,6 +169,8 @@ class Pipeline:
172
  )
173
 
174
  def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
 
 
175
 
176
  if args.taesd:
177
  vae = AutoencoderTiny.from_pretrained(
@@ -204,7 +203,7 @@ class Pipeline:
204
 
205
  self.canny_torch = SobelOperator(device=device)
206
  self.pipe.set_progress_bar_config(disable=True)
207
- self.pipe.to(device=device, dtype=torch_dtype).to(device)
208
 
209
  if args.sfast:
210
  from sfast.compilers.stable_diffusion_pipeline_compiler import (
@@ -242,7 +241,7 @@ class Pipeline:
242
  control_image=[Image.new("RGB", (768, 768))],
243
  )
244
 
245
- def predict(self, params: "Pipeline.InputParams") -> Image.Image:
246
  generator = torch.manual_seed(params.seed)
247
 
248
  prompt = params.prompt
@@ -265,7 +264,7 @@ class Pipeline:
265
  control_image = self.canny_torch(
266
  params.image, params.canny_low_threshold, params.canny_high_threshold
267
  )
268
- steps = params.steps
269
  strength = params.strength
270
  if int(steps * strength) < 1:
271
  steps = math.ceil(1 / max(0.10, strength))
@@ -281,7 +280,7 @@ class Pipeline:
281
  negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
282
  generator=generator,
283
  strength=strength,
284
- num_inference_steps=steps,
285
  guidance_scale=params.guidance_scale,
286
  width=params.width,
287
  height=params.height,
@@ -290,14 +289,13 @@ class Pipeline:
290
  control_guidance_start=params.controlnet_start,
291
  control_guidance_end=params.controlnet_end,
292
  )
293
-
294
- nsfw_content_detected = (
295
- results.nsfw_content_detected[0]
296
- if "nsfw_content_detected" in results
297
- else False
298
- )
299
- if nsfw_content_detected:
300
  return None
 
301
  result_image = results.images[0]
302
  if params.debug_canny:
303
  # paste control_image on top of result_image
 
9
  from compel import Compel, ReturnedEmbeddingsType
10
  import torch
11
  from pipelines.utils.canny_gpu import SobelOperator
12
+ from pipelines.utils.safety_checker import SafetyChecker
13
  from huggingface_hub import hf_hub_download
14
  from safetensors.torch import load_file
15
 
 
18
  except:
19
  pass
20
 
 
21
  from config import Args
22
  from pydantic import BaseModel, Field
23
  from PIL import Image
 
35
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
36
  page_content = """
37
  <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDXL</h1>
38
+ <h3 class="text-xl font-bold">SDXL-Lightining + Controlnet</h3>
39
  <p class="text-sm">
40
  This demo showcases
41
  <a
 
84
  seed: int = Field(
85
  2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
86
  )
 
 
 
87
  width: int = Field(
88
  1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
89
  )
 
169
  )
170
 
171
  def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
172
+ if args.safety_checker:
173
+ self.safety_checker = SafetyChecker(device=device.type)
174
 
175
  if args.taesd:
176
  vae = AutoencoderTiny.from_pretrained(
 
203
 
204
  self.canny_torch = SobelOperator(device=device)
205
  self.pipe.set_progress_bar_config(disable=True)
206
+ self.pipe.to(device=device, dtype=torch_dtype)
207
 
208
  if args.sfast:
209
  from sfast.compilers.stable_diffusion_pipeline_compiler import (
 
241
  control_image=[Image.new("RGB", (768, 768))],
242
  )
243
 
244
+ def predict(self, params: "Pipeline.InputParams") -> Image.Image | None:
245
  generator = torch.manual_seed(params.seed)
246
 
247
  prompt = params.prompt
 
264
  control_image = self.canny_torch(
265
  params.image, params.canny_low_threshold, params.canny_high_threshold
266
  )
267
+ steps = NUM_STEPS
268
  strength = params.strength
269
  if int(steps * strength) < 1:
270
  steps = math.ceil(1 / max(0.10, strength))
 
280
  negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
281
  generator=generator,
282
  strength=strength,
283
+ num_inference_steps=NUM_STEPS,
284
  guidance_scale=params.guidance_scale,
285
  width=params.width,
286
  height=params.height,
 
289
  control_guidance_start=params.controlnet_start,
290
  control_guidance_end=params.controlnet_end,
291
  )
292
+ images = results.images
293
+ if self.safety_checker:
294
+ images, has_nsfw_concepts = self.safety_checker(images)
295
+ print(has_nsfw_concepts)
296
+ if any(has_nsfw_concepts):
 
 
297
  return None
298
+
299
  result_image = results.images[0]
300
  if params.debug_canny:
301
  # paste control_image on top of result_image
server/pipelines/utils/safety_checker.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
18
+ from PIL import Image
19
+
20
+
21
+ def cosine_distance(image_embeds, text_embeds):
22
+ normalized_image_embeds = nn.functional.normalize(image_embeds)
23
+ normalized_text_embeds = nn.functional.normalize(text_embeds)
24
+ return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
25
+
26
+
27
+ class StableDiffusionSafetyChecker(PreTrainedModel):
28
+ config_class = CLIPConfig
29
+
30
+ _no_split_modules = ["CLIPEncoderLayer"]
31
+
32
+ def __init__(self, config: CLIPConfig):
33
+ super().__init__(config)
34
+
35
+ self.vision_model = CLIPVisionModel(config.vision_config)
36
+ self.visual_projection = nn.Linear(
37
+ config.vision_config.hidden_size, config.projection_dim, bias=False
38
+ )
39
+
40
+ self.concept_embeds = nn.Parameter(
41
+ torch.ones(17, config.projection_dim), requires_grad=False
42
+ )
43
+ self.special_care_embeds = nn.Parameter(
44
+ torch.ones(3, config.projection_dim), requires_grad=False
45
+ )
46
+
47
+ self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
48
+ self.special_care_embeds_weights = nn.Parameter(
49
+ torch.ones(3), requires_grad=False
50
+ )
51
+
52
+ @torch.no_grad()
53
+ def forward(self, clip_input, images):
54
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
55
+ image_embeds = self.visual_projection(pooled_output)
56
+
57
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
58
+ special_cos_dist = (
59
+ cosine_distance(image_embeds, self.special_care_embeds)
60
+ .cpu()
61
+ .float()
62
+ .numpy()
63
+ )
64
+ cos_dist = (
65
+ cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
66
+ )
67
+
68
+ result = []
69
+ batch_size = image_embeds.shape[0]
70
+ for i in range(batch_size):
71
+ result_img = {
72
+ "special_scores": {},
73
+ "special_care": [],
74
+ "concept_scores": {},
75
+ "bad_concepts": [],
76
+ }
77
+
78
+ # increase this value to create a stronger `nfsw` filter
79
+ # at the cost of increasing the possibility of filtering benign images
80
+ adjustment = 0.0
81
+
82
+ for concept_idx in range(len(special_cos_dist[0])):
83
+ concept_cos = special_cos_dist[i][concept_idx]
84
+ concept_threshold = self.special_care_embeds_weights[concept_idx].item()
85
+ result_img["special_scores"][concept_idx] = round(
86
+ concept_cos - concept_threshold + adjustment, 3
87
+ )
88
+ if result_img["special_scores"][concept_idx] > 0:
89
+ result_img["special_care"].append(
90
+ {concept_idx, result_img["special_scores"][concept_idx]}
91
+ )
92
+ adjustment = 0.01
93
+
94
+ for concept_idx in range(len(cos_dist[0])):
95
+ concept_cos = cos_dist[i][concept_idx]
96
+ concept_threshold = self.concept_embeds_weights[concept_idx].item()
97
+ result_img["concept_scores"][concept_idx] = round(
98
+ concept_cos - concept_threshold + adjustment, 3
99
+ )
100
+ if result_img["concept_scores"][concept_idx] > 0:
101
+ result_img["bad_concepts"].append(concept_idx)
102
+
103
+ result.append(result_img)
104
+
105
+ has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
106
+
107
+ return has_nsfw_concepts
108
+
109
+ @torch.no_grad()
110
+ def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
111
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
112
+ image_embeds = self.visual_projection(pooled_output)
113
+
114
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
115
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds)
116
+
117
+ # increase this value to create a stronger `nsfw` filter
118
+ # at the cost of increasing the possibility of filtering benign images
119
+ adjustment = 0.0
120
+
121
+ special_scores = (
122
+ special_cos_dist - self.special_care_embeds_weights + adjustment
123
+ )
124
+ # special_scores = special_scores.round(decimals=3)
125
+ special_care = torch.any(special_scores > 0, dim=1)
126
+ special_adjustment = special_care * 0.01
127
+ special_adjustment = special_adjustment.unsqueeze(1).expand(
128
+ -1, cos_dist.shape[1]
129
+ )
130
+
131
+ concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
132
+ # concept_scores = concept_scores.round(decimals=3)
133
+ has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
134
+
135
+ images[has_nsfw_concepts] = 0.0 # black image
136
+
137
+ return images, has_nsfw_concepts
138
+
139
+
140
+ class SafetyChecker:
141
+ def __init__(self, device="cuda"):
142
+ from transformers import CLIPFeatureExtractor
143
+
144
+ self.device = device
145
+ self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
146
+ "CompVis/stable-diffusion-safety-checker"
147
+ ).to(device)
148
+ self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
149
+ "openai/clip-vit-base-patch32"
150
+ )
151
+
152
+ def __call__(
153
+ self, images: list[Image.Image]
154
+ ) -> tuple[list[Image.Image], list[bool]]:
155
+ safety_checker_input = self.feature_extractor(images, return_tensors="pt").to(
156
+ self.device
157
+ )
158
+ has_nsfw_concepts = self.safety_checker(
159
+ images=[images],
160
+ clip_input=safety_checker_input.pixel_values.to(self.device),
161
+ )
162
+
163
+ return images, has_nsfw_concepts