use pruna for quantization
Browse files- server/config.py +7 -0
- server/pipelines/controlnet.py +10 -1
- server/pipelines/img2imgFlux.py +101 -35
- server/pipelines/img2imgSDTurbo.py +10 -2
- server/pipelines/img2imgSDXL-Lightning.py +8 -0
- server/pipelines/img2imgSDXLTurbo.py +19 -3
- server/requirements.txt +18 -13
server/config.py
CHANGED
@@ -20,6 +20,7 @@ class Args(BaseModel):
|
|
20 |
onediff: bool = False
|
21 |
compel: bool = False
|
22 |
debug: bool = False
|
|
|
23 |
|
24 |
def pretty_print(self) -> None:
|
25 |
print("\n")
|
@@ -123,6 +124,12 @@ parser.add_argument(
|
|
123 |
default=False,
|
124 |
help="Enable OneDiff",
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
parser.set_defaults(taesd=USE_TAESD)
|
127 |
|
128 |
config = Args.model_validate(vars(parser.parse_args()))
|
|
|
20 |
onediff: bool = False
|
21 |
compel: bool = False
|
22 |
debug: bool = False
|
23 |
+
pruna: bool = False
|
24 |
|
25 |
def pretty_print(self) -> None:
|
26 |
print("\n")
|
|
|
124 |
default=False,
|
125 |
help="Enable OneDiff",
|
126 |
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--pruna",
|
129 |
+
action="store_true",
|
130 |
+
default=False,
|
131 |
+
help="Enable Pruna",
|
132 |
+
)
|
133 |
parser.set_defaults(taesd=USE_TAESD)
|
134 |
|
135 |
config = Args.model_validate(vars(parser.parse_args()))
|
server/pipelines/controlnet.py
CHANGED
@@ -17,6 +17,8 @@ from config import Args
|
|
17 |
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
19 |
import math
|
|
|
|
|
20 |
|
21 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
22 |
taesd_model = "madebyollin/taesd"
|
@@ -58,7 +60,7 @@ class Pipeline:
|
|
58 |
input_mode: str = "image"
|
59 |
page_content: str = page_content
|
60 |
|
61 |
-
class InputParams(
|
62 |
prompt: str = Field(
|
63 |
default_prompt,
|
64 |
title="Prompt",
|
@@ -170,6 +172,13 @@ class Pipeline:
|
|
170 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
171 |
).to(device)
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
if args.sfast:
|
174 |
print("\nRunning sfast compile\n")
|
175 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
|
|
17 |
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
19 |
import math
|
20 |
+
from pruna import SmashConfig, smash
|
21 |
+
from util import ParamsModel
|
22 |
|
23 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
24 |
taesd_model = "madebyollin/taesd"
|
|
|
60 |
input_mode: str = "image"
|
61 |
page_content: str = page_content
|
62 |
|
63 |
+
class InputParams(ParamsModel):
|
64 |
prompt: str = Field(
|
65 |
default_prompt,
|
66 |
title="Prompt",
|
|
|
172 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
173 |
).to(device)
|
174 |
|
175 |
+
if args.pruna:
|
176 |
+
# Create and smash your model
|
177 |
+
smash_config = SmashConfig()
|
178 |
+
smash_config["cacher"] = "deepcache"
|
179 |
+
smash_config["compiler"] = "stable_fast"
|
180 |
+
self.pipe = smash(model=self.pipe, smash_config=smash_config)
|
181 |
+
|
182 |
if args.sfast:
|
183 |
print("\nRunning sfast compile\n")
|
184 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
server/pipelines/img2imgFlux.py
CHANGED
@@ -2,21 +2,19 @@ import torch
|
|
2 |
|
3 |
from optimum.quanto import freeze, qfloat8, quantize
|
4 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
from diffusers import (
|
7 |
-
FlowMatchEulerDiscreteScheduler,
|
8 |
-
AutoencoderKL,
|
9 |
-
AutoencoderTiny,
|
10 |
-
FluxImg2ImgPipeline,
|
11 |
-
FluxPipeline,
|
12 |
-
)
|
13 |
-
|
14 |
-
from diffusers import (
|
15 |
-
FluxImg2ImgPipeline,
|
16 |
-
FluxPipeline,
|
17 |
-
FluxTransformer2DModel,
|
18 |
-
GGUFQuantizationConfig,
|
19 |
-
)
|
20 |
|
21 |
try:
|
22 |
import intel_extension_for_pytorch as ipex # type: ignore
|
@@ -76,10 +74,10 @@ class Pipeline:
|
|
76 |
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
77 |
)
|
78 |
width: int = Field(
|
79 |
-
|
80 |
)
|
81 |
height: int = Field(
|
82 |
-
|
83 |
)
|
84 |
strength: float = Field(
|
85 |
0.5,
|
@@ -107,33 +105,101 @@ class Pipeline:
|
|
107 |
# "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
|
108 |
# )
|
109 |
print("Loading model")
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
transformer=transformer,
|
123 |
-
torch_dtype=torch.bfloat16,
|
124 |
)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
# pipe.enable_model_cpu_offload()
|
130 |
-
pipe
|
|
|
|
|
|
|
131 |
|
132 |
# pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
133 |
|
134 |
self.pipe = pipe
|
135 |
self.pipe.set_progress_bar_config(disable=True)
|
136 |
-
|
137 |
# vae = AutoencoderKL.from_pretrained(
|
138 |
# base_model_path, subfolder="vae", torch_dtype=torch_dtype
|
139 |
# )
|
|
|
2 |
|
3 |
from optimum.quanto import freeze, qfloat8, quantize
|
4 |
from transformers.modeling_utils import PreTrainedModel
|
5 |
+
from diffusers import AutoencoderTiny
|
6 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
7 |
+
from diffusers.pipelines.flux.pipeline_flux_img2img import FluxImg2ImgPipeline
|
8 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
9 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
10 |
+
|
11 |
+
|
12 |
+
from pruna import smash, SmashConfig
|
13 |
+
from pruna.telemetry import set_telemetry_metrics
|
14 |
+
|
15 |
+
set_telemetry_metrics(False) # disable telemetry for current session
|
16 |
+
set_telemetry_metrics(False, set_as_default=True) # disable telemetry globally
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
try:
|
20 |
import intel_extension_for_pytorch as ipex # type: ignore
|
|
|
74 |
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
75 |
)
|
76 |
width: int = Field(
|
77 |
+
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
78 |
)
|
79 |
height: int = Field(
|
80 |
+
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
81 |
)
|
82 |
strength: float = Field(
|
83 |
0.5,
|
|
|
105 |
# "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
|
106 |
# )
|
107 |
print("Loading model")
|
108 |
+
|
109 |
+
model_id = "black-forest-labs/FLUX.1-schnell"
|
110 |
+
model_revision = "refs/pr/1"
|
111 |
+
text_model_id = "openai/clip-vit-large-patch14"
|
112 |
+
model_data_type = torch.bfloat16
|
113 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
114 |
+
text_model_id, torch_dtype=model_data_type
|
115 |
+
)
|
116 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
117 |
+
text_model_id, torch_dtype=model_data_type
|
118 |
+
)
|
119 |
+
|
120 |
+
# 2
|
121 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(
|
122 |
+
model_id,
|
123 |
+
subfolder="tokenizer_2",
|
124 |
+
torch_dtype=model_data_type,
|
125 |
+
revision=model_revision,
|
126 |
+
)
|
127 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
128 |
+
model_id,
|
129 |
+
subfolder="text_encoder_2",
|
130 |
+
torch_dtype=model_data_type,
|
131 |
+
revision=model_revision,
|
132 |
+
)
|
133 |
+
|
134 |
+
# Transformers
|
135 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
136 |
+
model_id, subfolder="scheduler", revision=model_revision
|
137 |
+
)
|
138 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
139 |
+
model_id,
|
140 |
+
subfolder="transformer",
|
141 |
+
torch_dtype=model_data_type,
|
142 |
+
revision=model_revision,
|
143 |
+
)
|
144 |
+
|
145 |
+
# VAE
|
146 |
+
# vae = AutoencoderKL.from_pretrained(
|
147 |
+
# model_id,
|
148 |
+
# subfolder="vae",
|
149 |
+
# torch_dtype=model_data_type,
|
150 |
+
# revision=model_revision,
|
151 |
+
# )
|
152 |
+
|
153 |
+
vae = AutoencoderTiny.from_pretrained(
|
154 |
+
"madebyollin/taef1", torch_dtype=torch.bfloat16
|
155 |
+
)
|
156 |
+
|
157 |
+
# Initialize the SmashConfig
|
158 |
+
smash_config = SmashConfig()
|
159 |
+
smash_config["quantizer"] = "quanto"
|
160 |
+
smash_config["quanto_calibrate"] = False
|
161 |
+
smash_config["quanto_weight_bits"] = "qint4"
|
162 |
+
# (
|
163 |
+
# "qint4" # "qfloat8" # or "qint2", "qint4", "qint8"
|
164 |
+
# )
|
165 |
+
|
166 |
+
transformer = smash(
|
167 |
+
model=transformer,
|
168 |
+
smash_config=smash_config,
|
169 |
+
)
|
170 |
+
text_encoder_2 = smash(
|
171 |
+
model=text_encoder_2,
|
172 |
+
smash_config=smash_config,
|
173 |
+
)
|
174 |
+
|
175 |
+
pipe = FluxImg2ImgPipeline(
|
176 |
+
scheduler=scheduler,
|
177 |
+
text_encoder=text_encoder,
|
178 |
+
tokenizer=tokenizer,
|
179 |
+
text_encoder_2=text_encoder_2,
|
180 |
+
tokenizer_2=tokenizer_2,
|
181 |
+
vae=vae,
|
182 |
transformer=transformer,
|
|
|
183 |
)
|
184 |
+
|
185 |
+
# if args.taesd:
|
186 |
+
# pipe.vae = AutoencoderTiny.from_pretrained(
|
187 |
+
# taesd_path, torch_dtype=torch.bfloat16, use_safetensors=True
|
188 |
+
# )
|
189 |
# pipe.enable_model_cpu_offload()
|
190 |
+
pipe.text_encoder.to(device)
|
191 |
+
pipe.vae.to(device)
|
192 |
+
pipe.transformer.to(device)
|
193 |
+
pipe.text_encoder_2.to(device)
|
194 |
|
195 |
# pipe.enable_model_cpu_offload()
|
196 |
+
# For added memory savings run this block, there is however a trade-off with speed.
|
197 |
+
# vae.enable_tiling()
|
198 |
+
# vae.enable_slicing()
|
199 |
+
# pipe.enable_sequential_cpu_offload()
|
200 |
|
201 |
self.pipe = pipe
|
202 |
self.pipe.set_progress_bar_config(disable=True)
|
|
|
203 |
# vae = AutoencoderKL.from_pretrained(
|
204 |
# base_model_path, subfolder="vae", torch_dtype=torch_dtype
|
205 |
# )
|
server/pipelines/img2imgSDTurbo.py
CHANGED
@@ -15,6 +15,7 @@ from PIL import Image
|
|
15 |
from util import ParamsModel
|
16 |
import math
|
17 |
|
|
|
18 |
|
19 |
base_model = "stabilityai/sd-turbo"
|
20 |
taesd_model = "madebyollin/taesd"
|
@@ -102,6 +103,13 @@ class Pipeline:
|
|
102 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
103 |
).to(device)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
if args.sfast:
|
106 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
107 |
compile,
|
@@ -130,8 +138,8 @@ class Pipeline:
|
|
130 |
|
131 |
self.pipe.set_progress_bar_config(disable=True)
|
132 |
self.pipe.to(device=device, dtype=torch_dtype)
|
133 |
-
if device.type != "mps":
|
134 |
-
|
135 |
|
136 |
if args.torch_compile:
|
137 |
print("Running torch compile")
|
|
|
15 |
from util import ParamsModel
|
16 |
import math
|
17 |
|
18 |
+
from pruna import smash, SmashConfig
|
19 |
|
20 |
base_model = "stabilityai/sd-turbo"
|
21 |
taesd_model = "madebyollin/taesd"
|
|
|
103 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
104 |
).to(device)
|
105 |
|
106 |
+
if args.pruna:
|
107 |
+
# Create and smash your model
|
108 |
+
smash_config = SmashConfig()
|
109 |
+
smash_config["cacher"] = "deepcache"
|
110 |
+
smash_config["compiler"] = "stable_fast"
|
111 |
+
self.pipe = smash(model=self.pipe, smash_config=smash_config)
|
112 |
+
|
113 |
if args.sfast:
|
114 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
115 |
compile,
|
|
|
138 |
|
139 |
self.pipe.set_progress_bar_config(disable=True)
|
140 |
self.pipe.to(device=device, dtype=torch_dtype)
|
141 |
+
# if device.type != "mps":
|
142 |
+
# self.pipe.unet.to(memory_format=torch.channels_last)
|
143 |
|
144 |
if args.torch_compile:
|
145 |
print("Running torch compile")
|
server/pipelines/img2imgSDXL-Lightning.py
CHANGED
@@ -20,6 +20,7 @@ from pydantic import BaseModel, Field
|
|
20 |
from PIL import Image
|
21 |
from util import ParamsModel
|
22 |
import math
|
|
|
23 |
|
24 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
25 |
repo = "ByteDance/SDXL-Lightning"
|
@@ -135,6 +136,13 @@ class Pipeline:
|
|
135 |
self.pipe.scheduler.config, timestep_spacing="trailing"
|
136 |
)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
if args.sfast:
|
139 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
140 |
compile,
|
|
|
20 |
from PIL import Image
|
21 |
from util import ParamsModel
|
22 |
import math
|
23 |
+
from pruna import SmashConfig, smash
|
24 |
|
25 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
26 |
repo = "ByteDance/SDXL-Lightning"
|
|
|
136 |
self.pipe.scheduler.config, timestep_spacing="trailing"
|
137 |
)
|
138 |
|
139 |
+
if args.pruna:
|
140 |
+
# Create and smash your model
|
141 |
+
smash_config = SmashConfig()
|
142 |
+
smash_config["cacher"] = "deepcache"
|
143 |
+
smash_config["compiler"] = "stable_fast"
|
144 |
+
self.pipe = smash(model=self.pipe, smash_config=smash_config)
|
145 |
+
|
146 |
if args.sfast:
|
147 |
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
148 |
compile,
|
server/pipelines/img2imgSDXLTurbo.py
CHANGED
@@ -17,6 +17,13 @@ from PIL import Image
|
|
17 |
from util import ParamsModel
|
18 |
import math
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
base_model = "stabilityai/sdxl-turbo"
|
21 |
taesd_model = "madebyollin/taesdxl"
|
22 |
|
@@ -104,10 +111,11 @@ class Pipeline:
|
|
104 |
)
|
105 |
|
106 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
107 |
-
|
108 |
base_model,
|
109 |
safety_checker=None,
|
110 |
)
|
|
|
111 |
if args.taesd:
|
112 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
113 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
@@ -125,11 +133,16 @@ class Pipeline:
|
|
125 |
config.enable_cuda_graph = True
|
126 |
self.pipe = compile(self.pipe, config=config)
|
127 |
|
128 |
-
self.pipe.set_progress_bar_config(disable=True)
|
129 |
-
self.pipe.to(device=device, dtype=torch_dtype)
|
130 |
if device.type != "mps":
|
131 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
if args.torch_compile:
|
134 |
print("Running torch compile")
|
135 |
self.pipe.unet = torch.compile(
|
@@ -151,6 +164,9 @@ class Pipeline:
|
|
151 |
requires_pooled=[False, True],
|
152 |
)
|
153 |
|
|
|
|
|
|
|
154 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
155 |
generator = torch.manual_seed(params.seed)
|
156 |
prompt = params.prompt
|
|
|
17 |
from util import ParamsModel
|
18 |
import math
|
19 |
|
20 |
+
from pruna import smash, SmashConfig
|
21 |
+
from pruna.telemetry import set_telemetry_metrics
|
22 |
+
|
23 |
+
set_telemetry_metrics(False) # disable telemetry for current session
|
24 |
+
set_telemetry_metrics(False, set_as_default=True) # disable telemetry globally
|
25 |
+
|
26 |
+
|
27 |
base_model = "stabilityai/sdxl-turbo"
|
28 |
taesd_model = "madebyollin/taesdxl"
|
29 |
|
|
|
111 |
)
|
112 |
|
113 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
114 |
+
base_pipe = AutoPipelineForImage2Image.from_pretrained(
|
115 |
base_model,
|
116 |
safety_checker=None,
|
117 |
)
|
118 |
+
self.pipe = None
|
119 |
if args.taesd:
|
120 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
121 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
|
|
133 |
config.enable_cuda_graph = True
|
134 |
self.pipe = compile(self.pipe, config=config)
|
135 |
|
|
|
|
|
136 |
if device.type != "mps":
|
137 |
self.pipe.unet.to(memory_format=torch.channels_last)
|
138 |
|
139 |
+
if args.pruna:
|
140 |
+
# Create and smash your model
|
141 |
+
smash_config = SmashConfig()
|
142 |
+
smash_config["cacher"] = "deepcache"
|
143 |
+
smash_config["compiler"] = "stable_fast"
|
144 |
+
self.pipe = smash(model=base_pipe, smash_config=smash_config)
|
145 |
+
|
146 |
if args.torch_compile:
|
147 |
print("Running torch compile")
|
148 |
self.pipe.unet = torch.compile(
|
|
|
164 |
requires_pooled=[False, True],
|
165 |
)
|
166 |
|
167 |
+
self.pipe.set_progress_bar_config(disable=True)
|
168 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
169 |
+
|
170 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
171 |
generator = torch.manual_seed(params.seed)
|
172 |
prompt = params.prompt
|
server/requirements.txt
CHANGED
@@ -1,30 +1,35 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
huggingface-hub
|
4 |
hf_transfer
|
5 |
-
|
6 |
-
|
7 |
-
fastapi==0.115.6
|
8 |
-
uvicorn[standard]==0.34.0
|
9 |
Pillow==11.0.0
|
10 |
-
accelerate
|
11 |
compel==2.0.2
|
12 |
controlnet-aux==0.0.9
|
13 |
peft==0.14.0
|
14 |
-
xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
|
15 |
markdown2
|
16 |
safetensors
|
17 |
-
stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/nightly/stable_fast-1.0.5.dev20241127+torch230cu121-cp310-cp310-manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
18 |
#oneflow @ https://github.com/siliconflow/oneflow_releases/releases/download/community_cu121/oneflow-0.9.1.dev20241114%2Bcu121-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
19 |
#onediff @ git+https://github.com/siliconflow/onediff.git@main#egg=onediff ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
20 |
setuptools
|
21 |
mpmath==1.3.0
|
22 |
-
numpy==1.*
|
23 |
controlnet-aux
|
24 |
sentencepiece==0.2.0
|
25 |
-
optimum-quanto
|
26 |
gguf==0.13.0
|
27 |
-
pydantic>=2.7.0
|
28 |
types-Pillow
|
29 |
mypy
|
30 |
-
python-dotenv
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch==2.5.1
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
|
6 |
+
numpy
|
7 |
+
diffusers
|
8 |
+
llvmlite>=0.39.0
|
9 |
+
numba>=0.56.0
|
10 |
+
pruna[stable-fast] ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
11 |
+
transformers
|
12 |
+
pydantic
|
13 |
huggingface-hub
|
14 |
hf_transfer
|
15 |
+
fastapi
|
16 |
+
uvicorn[standard]
|
|
|
|
|
17 |
Pillow==11.0.0
|
18 |
+
accelerate
|
19 |
compel==2.0.2
|
20 |
controlnet-aux==0.0.9
|
21 |
peft==0.14.0
|
|
|
22 |
markdown2
|
23 |
safetensors
|
24 |
+
# stable_fast @ https://github.com/chengzeyi/stable-fast/releases/download/nightly/stable_fast-1.0.5.dev20241127+torch230cu121-cp310-cp310-manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
25 |
#oneflow @ https://github.com/siliconflow/oneflow_releases/releases/download/community_cu121/oneflow-0.9.1.dev20241114%2Bcu121-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
26 |
#onediff @ git+https://github.com/siliconflow/onediff.git@main#egg=onediff ; sys_platform != 'darwin' or platform_machine != 'arm64'
|
27 |
setuptools
|
28 |
mpmath==1.3.0
|
|
|
29 |
controlnet-aux
|
30 |
sentencepiece==0.2.0
|
31 |
+
optimum-quanto # has to be optimum-quanto==0.2.5 for pruna int4
|
32 |
gguf==0.13.0
|
|
|
33 |
types-Pillow
|
34 |
mypy
|
35 |
+
python-dotenv
|