from diffusers import ( StableDiffusionXLPipeline, AutoencoderKL, TCDScheduler, ) from compel import Compel, ReturnedEmbeddingsType import torch from transformers import CLIPVisionModelWithProjection from huggingface_hub import hf_hub_download try: import intel_extension_for_pytorch as ipex # type: ignore except: pass from config import Args from pydantic import BaseModel, Field from util import ParamsModel from PIL import Image model_id = "stabilityai/stable-diffusion-xl-base-1.0" taesd_model = "madebyollin/taesdxl" ip_adapter_model = "ostris/ip-composition-adapter" file_name = "ip_plus_composition_sdxl.safetensors" default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" page_content = """

Hyper-SDXL Unified + IP Adpater Composition

Image-to-Image ControlNet

""" class Pipeline: class Info(BaseModel): name: str = "controlnet+SDXL+Turbo" title: str = "SDXL Turbo + Controlnet" description: str = "Generates an image from a text prompt" input_mode: str = "image" page_content: str = page_content class InputParams(ParamsModel): prompt: str = Field( default_prompt, title="Prompt", field="textarea", id="prompt", ) negative_prompt: str = Field( default_negative_prompt, title="Negative Prompt", field="textarea", id="negative_prompt", hide=True, ) seed: int = Field( 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" ) steps: int = Field( 2, min=1, max=15, title="Steps", field="range", hide=True, id="steps" ) width: int = Field( 1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" ) height: int = Field( 1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" ) guidance_scale: float = Field( 0.0, min=0, max=10, step=0.001, title="Guidance Scale", field="range", hide=True, id="guidance_scale", ) ip_adapter_scale: float = Field( 0.8, min=0.0, max=1.0, step=0.001, title="IP Adapter Scale", field="range", hide=True, id="ip_adapter_scale", ) eta: float = Field( 1.0, min=0, max=1.0, step=0.001, title="Eta", field="range", hide=True, id="eta", ) def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( "h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16, ).to(device) self.pipe = StableDiffusionXLPipeline.from_pretrained( model_id, safety_checker=None, torch_dtype=torch_dtype, vae=vae, image_encoder=image_encoder, variant="fp16", ) self.pipe.load_ip_adapter( ip_adapter_model, subfolder="", weight_name=[file_name], image_encoder_folder=None, ) self.pipe.load_lora_weights( hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors") ) self.pipe.fuse_lora() self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config) self.pipe.set_ip_adapter_scale([0.8]) if args.sfast: from sfast.compilers.stable_diffusion_pipeline_compiler import ( compile, CompilationConfig, ) config = CompilationConfig.Default() # config.enable_xformers = True config.enable_triton = True config.enable_cuda_graph = True self.pipe = compile(self.pipe, config=config) self.pipe.set_progress_bar_config(disable=True) self.pipe.to(device=device) if device.type != "mps": self.pipe.unet.to(memory_format=torch.channels_last) if args.compel: self.pipe.compel_proc = Compel( tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2], text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True], ) if args.torch_compile: self.pipe.unet = torch.compile( self.pipe.unet, mode="reduce-overhead", fullgraph=True ) self.pipe.vae = torch.compile( self.pipe.vae, mode="reduce-overhead", fullgraph=True ) self.pipe( prompt="warmup", image=[Image.new("RGB", (768, 768))], ) def predict(self, params: "Pipeline.InputParams") -> Image.Image: generator = torch.manual_seed(params.seed) self.pipe.set_ip_adapter_scale([params.ip_adapter_scale]) prompt = params.prompt negative_prompt = params.negative_prompt prompt_embeds = None pooled_prompt_embeds = None negative_prompt_embeds = None negative_pooled_prompt_embeds = None if hasattr(self.pipe, "compel_proc"): _prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc( [params.prompt, params.negative_prompt] ) prompt = None negative_prompt = None prompt_embeds = _prompt_embeds[0:1] pooled_prompt_embeds = pooled_prompt_embeds[0:1] negative_prompt_embeds = _prompt_embeds[1:2] negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2] steps = params.steps results = self.pipe( prompt=prompt, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, generator=generator, num_inference_steps=steps, guidance_scale=params.guidance_scale, width=params.width, eta=params.eta, height=params.height, ip_adapter_image=[params.image], output_type="pil", ) return results.images[0]