import torch from optimum.quanto import freeze, qfloat8, quantize from transformers.modeling_utils import PreTrainedModel from diffusers import AutoencoderTiny from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel from diffusers.pipelines.flux.pipeline_flux_img2img import FluxImg2ImgPipeline from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL from pruna import smash, SmashConfig from pruna.telemetry import set_telemetry_metrics set_telemetry_metrics(False) # disable telemetry for current session set_telemetry_metrics(False, set_as_default=True) # disable telemetry globally try: import intel_extension_for_pytorch as ipex # type: ignore except: pass import psutil from config import Args from pydantic import BaseModel, Field from PIL import Image from pathlib import Path from util import ParamsModel import math import gc # model_path = "black-forest-labs/FLUX.1-dev" model_path = "black-forest-labs/FLUX.1-schnell" base_model_path = "black-forest-labs/FLUX.1-schnell" taesd_path = "madebyollin/taef1" subfolder = "transformer" transformer_path = model_path models_path = Path("models") default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" page_content = """

Real-Time FLUX

""" def flush(): torch.cuda.empty_cache() gc.collect() class Pipeline: class Info(BaseModel): name: str = "img2img" title: str = "Image-to-Image SDXL" description: str = "Generates an image from a text prompt" input_mode: str = "image" page_content: str = page_content class InputParams(ParamsModel): prompt: str = Field( default_prompt, title="Prompt", field="textarea", id="prompt", ) seed: int = Field( 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" ) steps: int = Field( 1, min=1, max=15, title="Steps", field="range", hide=True, id="steps" ) width: int = Field( 1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" ) height: int = Field( 1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" ) strength: float = Field( 0.5, min=0.25, max=1.0, step=0.001, title="Strength", field="range", hide=True, id="strength", ) guidance: float = Field( 3.5, min=0, max=20, step=0.001, title="Guidance", hide=True, field="range", id="guidance", ) def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): # ckpt_path = ( # "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" # ) print("Loading model") model_id = "black-forest-labs/FLUX.1-schnell" model_revision = "refs/pr/1" text_model_id = "openai/clip-vit-large-patch14" model_data_type = torch.bfloat16 tokenizer = CLIPTokenizer.from_pretrained( text_model_id, torch_dtype=model_data_type ) text_encoder = CLIPTextModel.from_pretrained( text_model_id, torch_dtype=model_data_type ) # 2 tokenizer_2 = T5TokenizerFast.from_pretrained( model_id, subfolder="tokenizer_2", torch_dtype=model_data_type, revision=model_revision, ) text_encoder_2 = T5EncoderModel.from_pretrained( model_id, subfolder="text_encoder_2", torch_dtype=model_data_type, revision=model_revision, ) # Transformers scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( model_id, subfolder="scheduler", revision=model_revision ) transformer = FluxTransformer2DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=model_data_type, revision=model_revision, ) # VAE # vae = AutoencoderKL.from_pretrained( # model_id, # subfolder="vae", # torch_dtype=model_data_type, # revision=model_revision, # ) vae = AutoencoderTiny.from_pretrained( "madebyollin/taef1", torch_dtype=torch.bfloat16 ) # Initialize the SmashConfig smash_config = SmashConfig() smash_config["quantizer"] = "quanto" smash_config["quanto_calibrate"] = False smash_config["quanto_weight_bits"] = "qint4" # ( # "qint4" # "qfloat8" # or "qint2", "qint4", "qint8" # ) transformer = smash( model=transformer, smash_config=smash_config, ) text_encoder_2 = smash( model=text_encoder_2, smash_config=smash_config, ) pipe = FluxImg2ImgPipeline( scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, vae=vae, transformer=transformer, ) # if args.taesd: # pipe.vae = AutoencoderTiny.from_pretrained( # taesd_path, torch_dtype=torch.bfloat16, use_safetensors=True # ) # pipe.enable_model_cpu_offload() pipe.text_encoder.to(device) pipe.vae.to(device) pipe.transformer.to(device) pipe.text_encoder_2.to(device) # pipe.enable_model_cpu_offload() # For added memory savings run this block, there is however a trade-off with speed. # vae.enable_tiling() # vae.enable_slicing() # pipe.enable_sequential_cpu_offload() self.pipe = pipe self.pipe.set_progress_bar_config(disable=True) # vae = AutoencoderKL.from_pretrained( # base_model_path, subfolder="vae", torch_dtype=torch_dtype # ) def predict(self, params: "Pipeline.InputParams") -> Image.Image: generator = torch.manual_seed(params.seed) steps = params.steps strength = params.strength prompt = params.prompt guidance = params.guidance results = self.pipe( image=params.image, prompt=prompt, generator=generator, strength=strength, num_inference_steps=steps, guidance_scale=guidance, width=params.width, height=params.height, ) return results.images[0]