Spaces:
Runtime error
Runtime error
File size: 8,173 Bytes
d7dbcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import math, random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common
from criteria.lpips.lpips import LPIPS
from models.StyleGANControler import StyleGANControler
from training.ranger import Ranger
from expansion.submission import Expansion
from expansion.utils.flowlib import point_vec
class Coach:
def __init__(self, opts):
self.opts = opts
if self.opts.checkpoint_path is None:
self.global_step = 0
else:
self.global_step = int(os.path.splitext(os.path.basename(self.opts.checkpoint_path))[0].split('_')[-1])
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
self.opts.device = self.device
# Initialize network
self.net = StyleGANControler(self.opts).to(self.device)
# Initialize loss
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
self.mse_loss = nn.MSELoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
# Initialize optical flow estimator
self.ex = Expansion()
# Set flow normalization values
if 'ffhq' in self.opts.stylegan_weights:
self.sigma_f = 4
self.sigma_e = 0.02
elif 'car' in self.opts.stylegan_weights:
self.sigma_f = 5
self.sigma_e = 0.03
elif 'cat' in self.opts.stylegan_weights:
self.sigma_f = 12
self.sigma_e = 0.04
elif 'church' in self.opts.stylegan_weights:
self.sigma_f = 8
self.sigma_e = 0.02
elif 'anime' in self.opts.stylegan_weights:
self.sigma_f = 7
self.sigma_e = 0.025
def train(self, truncation = 0.3, sigma = 0.1, target_layers = [0,1,2,3,4,5]):
x = np.array(range(0,256,16)).astype(np.float32)/127.5-1.
y = np.array(range(0,256,16)).astype(np.float32)/127.5-1.
xx, yy = np.meshgrid(x,y)
grid = np.concatenate([xx[:,:,None],yy[:,:,None]], axis=2)
grid = torch.from_numpy(grid[None,:]).cuda()
grid = grid.repeat(self.opts.batch_size,1,1,1)
while self.global_step < self.opts.max_steps:
with torch.no_grad():
z1 = torch.randn(self.opts.batch_size,512).to("cuda")
z2 = torch.randn(self.opts.batch_size,self.net.style_num, 512).to("cuda")
x1, w1, f1 = self.net.decoder([z1],input_is_latent=False,randomize_noise=False,return_feature_map=True,return_latents=True,truncation=truncation, truncation_latent=self.net.latent_avg[0])
x1 = self.net.face_pool(x1)
x2, w2 = self.net.decoder([z2],input_is_latent=False,randomize_noise=False,return_latents=True, truncation_latent=self.net.latent_avg[0])
x2 = self.net.face_pool(x2)
w_mid = w1.clone()
w_mid[:,target_layers] = w_mid[:,target_layers]+sigma*(w2[:,target_layers]-w_mid[:,target_layers])
x_mid, _ = self.net.decoder([w_mid], input_is_latent=True, randomize_noise=False, return_latents=False)
x_mid = self.net.face_pool(x_mid)
flow, logexp = self.ex.run(x1.detach(),x_mid.detach())
flow_feature = torch.cat([flow/self.sigma_f, logexp/self.sigma_e], dim=1)
f1 = F.interpolate(f1, (flow_feature.shape[2:]))
f1 = F.grid_sample(f1, grid, mode='nearest', align_corners=True)
flow_feature = F.grid_sample(flow_feature, grid, mode='nearest', align_corners=True)
flow_feature = flow_feature.view(flow_feature.shape[0], flow_feature.shape[1], -1).permute(0,2,1)
f1 = f1.view(f1.shape[0], f1.shape[1], -1).permute(0,2,1)
self.net.train()
self.optimizer.zero_grad()
w_hat = self.net.encoder(w1[:,target_layers].detach(), flow_feature.detach(), f1.detach())
loss, loss_dict, id_logs = self.calc_loss(w_hat, w_mid[:,target_layers].detach())
loss.backward()
self.optimizer.step()
w_mid[:,target_layers] = w_hat.detach()
x_hat, _ = self.net.decoder([w_mid], input_is_latent=True, randomize_noise=False)
x_hat = self.net.face_pool(x_hat)
if self.global_step % self.opts.image_interval == 0 or (
self.global_step < 1000 and self.global_step % 100 == 0):
imgL_o = ((x1.detach()+1.)*127.5)[0].permute(1,2,0).cpu().numpy()
flow = torch.cat((flow,torch.ones_like(flow)[:,:1]), dim=1)[0].permute(1,2,0).cpu().numpy()
flowvis = point_vec(imgL_o, flow)
flowvis = torch.from_numpy(flowvis[:,:,::-1].copy()).permute(2,0,1).unsqueeze(0)/127.5-1.
self.parse_and_log_images(None, flowvis, x_mid, x_hat, title='trained_images')
print(loss_dict)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step)
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write('**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict))
else:
f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict))
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def calc_loss(self, latent, w, y_hat=None, y=None):
loss_dict = {}
loss = 0.0
id_logs = None
if self.opts.l2_lambda > 0 and (y_hat is not None) and (y is not None):
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0 and (y_hat is not None) and (y is not None):
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
if self.opts.l2latent_lambda > 0:
loss_l2 = F.mse_loss(latent, w)
loss_dict['loss_l2latent'] = float(loss_l2)
loss += loss_l2 * self.opts.l2latent_lambda
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=1):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.tensor2im(x[i]),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step))
else:
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step))
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
save_dict['latent_avg'] = self.net.latent_avg
return save_dict |