Spaces:
Runtime error
Runtime error
File size: 18,088 Bytes
d7dbcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
"""
# ==============================
# flowlib.py
# library for optical flow processing
# Author: Ruoteng Li
# Date: 6th Aug 2016
# ==============================
"""
import png
from . import pfm
import numpy as np
import matplotlib.colors as cl
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import pdb
UNKNOWN_FLOW_THRESH = 1e7
SMALLFLOW = 0.0
LARGEFLOW = 1e8
"""
=============
Flow Section
=============
"""
def point_vec(img,flow,skip=16):
#img[:] = 255
maxsize=256
extendfac=2.
resize_factor = max(1,int(max(maxsize/img.shape[0], maxsize/img.shape[1])))
meshgrid = np.meshgrid(range(img.shape[1]),range(img.shape[0]))
dispimg = cv2.resize(img[:,:,::-1].copy(), None,fx=resize_factor,fy=resize_factor)
colorflow = flow_to_image(flow).astype(int)
for i in range(img.shape[1]): # x
for j in range(img.shape[0]): # y
if flow[j,i,2] != 1: continue
if j%skip!=0 or i%skip!=0: continue
xend = int((meshgrid[0][j,i]+extendfac*flow[j,i,0])*resize_factor)
yend = int((meshgrid[1][j,i]+extendfac*flow[j,i,1])*resize_factor)
leng = np.linalg.norm(flow[j,i,:2]*extendfac)
if leng<3:continue
dispimg = cv2.arrowedLine(dispimg, (meshgrid[0][j,i]*resize_factor,meshgrid[1][j,i]*resize_factor),\
(xend,yend),
(int(colorflow[j,i,2]),int(colorflow[j,i,1]),int(colorflow[j,i,0])),4,tipLength=2/leng,line_type=cv2.LINE_AA)
return dispimg
def show_flow(filename):
"""
visualize optical flow map using matplotlib
:param filename: optical flow file
:return: None
"""
flow = read_flow(filename)
img = flow_to_image(flow)
plt.imshow(img)
plt.show()
def visualize_flow(flow, mode='Y'):
"""
this function visualize the input flow
:param flow: input flow in array
:param mode: choose which color mode to visualize the flow (Y: Ccbcr, RGB: RGB color)
:return: None
"""
if mode == 'Y':
# Ccbcr color wheel
img = flow_to_image(flow)
plt.imshow(img)
plt.show()
elif mode == 'RGB':
(h, w) = flow.shape[0:2]
du = flow[:, :, 0]
dv = flow[:, :, 1]
valid = flow[:, :, 2]
max_flow = max(np.max(du), np.max(dv))
img = np.zeros((h, w, 3), dtype=np.float64)
# angle layer
img[:, :, 0] = np.arctan2(dv, du) / (2 * np.pi)
# magnitude layer, normalized to 1
img[:, :, 1] = np.sqrt(du * du + dv * dv) * 8 / max_flow
# phase layer
img[:, :, 2] = 8 - img[:, :, 1]
# clip to [0,1]
small_idx = img[:, :, 0:3] < 0
large_idx = img[:, :, 0:3] > 1
img[small_idx] = 0
img[large_idx] = 1
# convert to rgb
img = cl.hsv_to_rgb(img)
# remove invalid point
import pdb; pdb.set_trace()
img[:, :, 0] = img[:, :, 0] * valid
img[:, :, 1] = img[:, :, 1] * valid
img[:, :, 2] = img[:, :, 2] * valid
# show
plt.imshow(img)
plt.show()
return None
def read_flow(filename):
"""
read optical flow data from flow file
:param filename: name of the flow file
:return: optical flow data in numpy array
"""
if filename.endswith('.flo'):
flow = read_flo_file(filename)
elif filename.endswith('.png'):
flow = read_png_file(filename)
elif filename.endswith('.pfm'):
flow = read_pfm_file(filename)
else:
raise Exception('Invalid flow file format!')
return flow
def write_flow(flow, filename):
"""
write optical flow in Middlebury .flo format
:param flow: optical flow map
:param filename: optical flow file path to be saved
:return: None
"""
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = flow.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
magic.tofile(f)
w.tofile(f)
h.tofile(f)
flow.tofile(f)
f.close()
def save_flow_image(flow, image_file):
"""
save flow visualization into image file
:param flow: optical flow data
:param flow_fil
:return: None
"""
flow_img = flow_to_image(flow)
img_out = Image.fromarray(flow_img)
img_out.save(image_file)
def flowfile_to_imagefile(flow_file, image_file):
"""
convert flowfile into image file
:param flow: optical flow data
:param flow_fil
:return: None
"""
flow = read_flow(flow_file)
save_flow_image(flow, image_file)
def segment_flow(flow):
h = flow.shape[0]
w = flow.shape[1]
u = flow[:, :, 0]
v = flow[:, :, 1]
idx = ((abs(u) > LARGEFLOW) | (abs(v) > LARGEFLOW))
idx2 = (abs(u) == SMALLFLOW)
class0 = (v == 0) & (u == 0)
u[idx2] = 0.00001
tan_value = v / u
class1 = (tan_value < 1) & (tan_value >= 0) & (u > 0) & (v >= 0)
class2 = (tan_value >= 1) & (u >= 0) & (v >= 0)
class3 = (tan_value < -1) & (u <= 0) & (v >= 0)
class4 = (tan_value < 0) & (tan_value >= -1) & (u < 0) & (v >= 0)
class8 = (tan_value >= -1) & (tan_value < 0) & (u > 0) & (v <= 0)
class7 = (tan_value < -1) & (u >= 0) & (v <= 0)
class6 = (tan_value >= 1) & (u <= 0) & (v <= 0)
class5 = (tan_value >= 0) & (tan_value < 1) & (u < 0) & (v <= 0)
seg = np.zeros((h, w))
seg[class1] = 1
seg[class2] = 2
seg[class3] = 3
seg[class4] = 4
seg[class5] = 5
seg[class6] = 6
seg[class7] = 7
seg[class8] = 8
seg[class0] = 0
seg[idx] = 0
return seg
def flow_error(tu, tv, u, v):
"""
Calculate average end point error
:param tu: ground-truth horizontal flow map
:param tv: ground-truth vertical flow map
:param u: estimated horizontal flow map
:param v: estimated vertical flow map
:return: End point error of the estimated flow
"""
smallflow = 0.0
'''
stu = tu[bord+1:end-bord,bord+1:end-bord]
stv = tv[bord+1:end-bord,bord+1:end-bord]
su = u[bord+1:end-bord,bord+1:end-bord]
sv = v[bord+1:end-bord,bord+1:end-bord]
'''
stu = tu[:]
stv = tv[:]
su = u[:]
sv = v[:]
idxUnknow = (abs(stu) > UNKNOWN_FLOW_THRESH) | (abs(stv) > UNKNOWN_FLOW_THRESH)
stu[idxUnknow] = 0
stv[idxUnknow] = 0
su[idxUnknow] = 0
sv[idxUnknow] = 0
ind2 = [(np.absolute(stu) > smallflow) | (np.absolute(stv) > smallflow)]
index_su = su[ind2]
index_sv = sv[ind2]
an = 1.0 / np.sqrt(index_su ** 2 + index_sv ** 2 + 1)
un = index_su * an
vn = index_sv * an
index_stu = stu[ind2]
index_stv = stv[ind2]
tn = 1.0 / np.sqrt(index_stu ** 2 + index_stv ** 2 + 1)
tun = index_stu * tn
tvn = index_stv * tn
'''
angle = un * tun + vn * tvn + (an * tn)
index = [angle == 1.0]
angle[index] = 0.999
ang = np.arccos(angle)
mang = np.mean(ang)
mang = mang * 180 / np.pi
'''
epe = np.sqrt((stu - su) ** 2 + (stv - sv) ** 2)
epe = epe[ind2]
mepe = np.mean(epe)
return mepe
def flow_to_image(flow):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def evaluate_flow_file(gt_file, pred_file):
"""
evaluate the estimated optical flow end point error according to ground truth provided
:param gt_file: ground truth file path
:param pred_file: estimated optical flow file path
:return: end point error, float32
"""
# Read flow files and calculate the errors
gt_flow = read_flow(gt_file) # ground truth flow
eva_flow = read_flow(pred_file) # predicted flow
# Calculate errors
average_pe = flow_error(gt_flow[:, :, 0], gt_flow[:, :, 1], eva_flow[:, :, 0], eva_flow[:, :, 1])
return average_pe
def evaluate_flow(gt_flow, pred_flow):
"""
gt: ground-truth flow
pred: estimated flow
"""
average_pe = flow_error(gt_flow[:, :, 0], gt_flow[:, :, 1], pred_flow[:, :, 0], pred_flow[:, :, 1])
return average_pe
"""
==============
Disparity Section
==============
"""
def read_disp_png(file_name):
"""
Read optical flow from KITTI .png file
:param file_name: name of the flow file
:return: optical flow data in matrix
"""
image_object = png.Reader(filename=file_name)
image_direct = image_object.asDirect()
image_data = list(image_direct[2])
(w, h) = image_direct[3]['size']
channel = len(image_data[0]) / w
flow = np.zeros((h, w, channel), dtype=np.uint16)
for i in range(len(image_data)):
for j in range(channel):
flow[i, :, j] = image_data[i][j::channel]
return flow[:, :, 0] / 256
def disp_to_flowfile(disp, filename):
"""
Read KITTI disparity file in png format
:param disp: disparity matrix
:param filename: the flow file name to save
:return: None
"""
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = disp.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
empty_map = np.zeros((height, width), dtype=np.float32)
data = np.dstack((disp, empty_map))
magic.tofile(f)
w.tofile(f)
h.tofile(f)
data.tofile(f)
f.close()
"""
==============
Image Section
==============
"""
def read_image(filename):
"""
Read normal image of any format
:param filename: name of the image file
:return: image data in matrix uint8 type
"""
img = Image.open(filename)
im = np.array(img)
return im
def warp_flow(img, flow):
h, w = flow.shape[:2]
flow = flow.copy().astype(np.float32)
flow[:,:,0] += np.arange(w)
flow[:,:,1] += np.arange(h)[:,np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
def warp_image(im, flow):
"""
Use optical flow to warp image to the next
:param im: image to warp
:param flow: optical flow
:return: warped image
"""
from scipy import interpolate
image_height = im.shape[0]
image_width = im.shape[1]
flow_height = flow.shape[0]
flow_width = flow.shape[1]
n = image_height * image_width
(iy, ix) = np.mgrid[0:image_height, 0:image_width]
(fy, fx) = np.mgrid[0:flow_height, 0:flow_width]
fx = fx.astype(np.float64)
fy = fy.astype(np.float64)
fx += flow[:,:,0]
fy += flow[:,:,1]
mask = np.logical_or(fx <0 , fx > flow_width)
mask = np.logical_or(mask, fy < 0)
mask = np.logical_or(mask, fy > flow_height)
fx = np.minimum(np.maximum(fx, 0), flow_width)
fy = np.minimum(np.maximum(fy, 0), flow_height)
points = np.concatenate((ix.reshape(n,1), iy.reshape(n,1)), axis=1)
xi = np.concatenate((fx.reshape(n, 1), fy.reshape(n,1)), axis=1)
warp = np.zeros((image_height, image_width, im.shape[2]))
for i in range(im.shape[2]):
channel = im[:, :, i]
plt.imshow(channel, cmap='gray')
values = channel.reshape(n, 1)
new_channel = interpolate.griddata(points, values, xi, method='cubic')
new_channel = np.reshape(new_channel, [flow_height, flow_width])
new_channel[mask] = 1
warp[:, :, i] = new_channel.astype(np.uint8)
return warp.astype(np.uint8)
"""
==============
Others
==============
"""
def pfm_to_flo(pfm_file):
flow_filename = pfm_file[0:pfm_file.find('.pfm')] + '.flo'
(data, scale) = pfm.readPFM(pfm_file)
flow = data[:, :, 0:2]
write_flow(flow, flow_filename)
def scale_image(image, new_range):
"""
Linearly scale the image into desired range
:param image: input image
:param new_range: the new range to be aligned
:return: image normalized in new range
"""
min_val = np.min(image).astype(np.float32)
max_val = np.max(image).astype(np.float32)
min_val_new = np.array(min(new_range), dtype=np.float32)
max_val_new = np.array(max(new_range), dtype=np.float32)
scaled_image = (image - min_val) / (max_val - min_val) * (max_val_new - min_val_new) + min_val_new
return scaled_image.astype(np.uint8)
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
def read_flo_file(filename):
"""
Read from Middlebury .flo file
:param flow_file: name of the flow file
:return: optical flow data in matrix
"""
f = open(filename, 'rb')
magic = np.fromfile(f, np.float32, count=1)
data2d = None
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
#print("Reading %d x %d flow file in .flo format" % (h, w))
flow = np.ones((h[0],w[0],3))
data2d = np.fromfile(f, np.float32, count=2 * w[0] * h[0])
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h[0], w[0], 2))
flow[:,:,:2] = data2d
f.close()
return flow
def read_png_file(flow_file):
"""
Read from KITTI .png file
:param flow_file: name of the flow file
:return: optical flow data in matrix
"""
flow = cv2.imread(flow_file,-1)[:,:,::-1].astype(np.float64)
# flow_object = png.Reader(filename=flow_file)
# flow_direct = flow_object.asDirect()
# flow_data = list(flow_direct[2])
# (w, h) = flow_direct[3]['size']
# #print("Reading %d x %d flow file in .png format" % (h, w))
# flow = np.zeros((h, w, 3), dtype=np.float64)
# for i in range(len(flow_data)):
# flow[i, :, 0] = flow_data[i][0::3]
# flow[i, :, 1] = flow_data[i][1::3]
# flow[i, :, 2] = flow_data[i][2::3]
invalid_idx = (flow[:, :, 2] == 0)
flow[:, :, 0:2] = (flow[:, :, 0:2] - 2 ** 15) / 64.0
flow[invalid_idx, 0] = 0
flow[invalid_idx, 1] = 0
return flow
def read_pfm_file(flow_file):
"""
Read from .pfm file
:param flow_file: name of the flow file
:return: optical flow data in matrix
"""
(data, scale) = pfm.readPFM(flow_file)
return data
# fast resample layer
def resample(img, sz):
"""
img: flow map to be resampled
sz: new flow map size. Must be [height,weight]
"""
original_image_size = img.shape
in_height = img.shape[0]
in_width = img.shape[1]
out_height = sz[0]
out_width = sz[1]
out_flow = np.zeros((out_height, out_width, 2))
# find scale
height_scale = float(in_height) / float(out_height)
width_scale = float(in_width) / float(out_width)
[x,y] = np.meshgrid(range(out_width), range(out_height))
xx = x * width_scale
yy = y * height_scale
x0 = np.floor(xx).astype(np.int32)
x1 = x0 + 1
y0 = np.floor(yy).astype(np.int32)
y1 = y0 + 1
x0 = np.clip(x0,0,in_width-1)
x1 = np.clip(x1,0,in_width-1)
y0 = np.clip(y0,0,in_height-1)
y1 = np.clip(y1,0,in_height-1)
Ia = img[y0,x0,:]
Ib = img[y1,x0,:]
Ic = img[y0,x1,:]
Id = img[y1,x1,:]
wa = (y1-yy) * (x1-xx)
wb = (yy-y0) * (x1-xx)
wc = (y1-yy) * (xx-x0)
wd = (yy-y0) * (xx-x0)
out_flow[:,:,0] = (Ia[:,:,0]*wa + Ib[:,:,0]*wb + Ic[:,:,0]*wc + Id[:,:,0]*wd) * out_width / in_width
out_flow[:,:,1] = (Ia[:,:,1]*wa + Ib[:,:,1]*wb + Ic[:,:,1]*wc + Id[:,:,1]*wd) * out_height / in_height
return out_flow
|