Spaces:
Runtime error
Runtime error
File size: 7,871 Bytes
d7dbcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import math
import png
import struct
import array
import numpy as np
import cv2
import pdb
from io import *
UNKNOWN_FLOW_THRESH = 1e9;
UNKNOWN_FLOW = 1e10;
# Middlebury checks
TAG_STRING = 'PIEH' # use this when WRITING the file
TAG_FLOAT = 202021.25 # check for this when READING the file
def readPFM(file):
import re
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(b'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def save_pfm(file, image, scale = 1):
import sys
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n' % scale)
image.tofile(file)
def ReadMiddleburyFloFile(path):
""" Read .FLO file as specified by Middlebury.
Returns tuple (width, height, u, v, mask), where u, v, mask are flat
arrays of values.
"""
with open(path, 'rb') as fil:
tag = struct.unpack('f', fil.read(4))[0]
width = struct.unpack('i', fil.read(4))[0]
height = struct.unpack('i', fil.read(4))[0]
assert tag == TAG_FLOAT
#data = np.fromfile(path, dtype=np.float, count=-1)
#data = data[3:]
fmt = 'f' * width*height*2
data = struct.unpack(fmt, fil.read(4*width*height*2))
u = data[::2]
v = data[1::2]
mask = map(lambda x,y: abs(x)<UNKNOWN_FLOW_THRESH and abs(y) < UNKNOWN_FLOW_THRESH, u, v)
mask = list(mask)
u_masked = map(lambda x,y: x if y else 0, u, mask)
v_masked = map(lambda x,y: x if y else 0, v, mask)
return width, height, list(u_masked), list(v_masked), list(mask)
def ReadKittiPngFile(path):
""" Read 16-bit .PNG file as specified by KITTI-2015 (flow).
Returns a tuple, (width, height, u, v, mask), where u, v, mask
are flat arrays of values.
"""
# Read .png file.
png_reader = png.Reader(path)
data = png_reader.read()
if data[3]['bitdepth'] != 16:
raise Exception('bitdepth of ' + path + ' is not 16')
width = data[0]
height = data[1]
# Get list of rows.
rows = list(data[2])
u = array.array('f', [0]) * width*height
v = array.array('f', [0]) * width*height
mask = array.array('f', [0]) * width*height
for y, row in enumerate(rows):
for x in range(width):
ind = width*y+x
u[ind] = (row[3*x] - 2**15) / 64.0
v[ind] = (row[3*x+1] - 2**15) / 64.0
mask[ind] = row[3*x+2]
# if mask[ind] > 0:
# print(u[ind], v[ind], mask[ind], row[3*x], row[3*x+1], row[3*x+2])
#png_reader.close()
return (width, height, u, v, mask)
def WriteMiddleburyFloFile(path, width, height, u, v, mask=None):
""" Write .FLO file as specified by Middlebury.
"""
if mask is not None:
u_masked = map(lambda x,y: x if y else UNKNOWN_FLOW, u, mask)
v_masked = map(lambda x,y: x if y else UNKNOWN_FLOW, v, mask)
else:
u_masked = u
v_masked = v
fmt = 'f' * width*height*2
# Interleave lists
data = [x for t in zip(u_masked,v_masked) for x in t]
with open(path, 'wb') as fil:
fil.write(str.encode(TAG_STRING))
fil.write(struct.pack('i', width))
fil.write(struct.pack('i', height))
fil.write(struct.pack(fmt, *data))
def write_flow(path,flow):
invalid_idx = (flow[:, :, 2] == 0)
flow[:, :, 0:2] = flow[:, :, 0:2]*64.+ 2 ** 15
flow[invalid_idx, 0] = 0
flow[invalid_idx, 1] = 0
flow = flow.astype(np.uint16)
flow = cv2.imwrite(path, flow[:,:,::-1])
#WriteKittiPngFile(path,
# flow.shape[1], flow.shape[0], flow[:,:,0].flatten(),
# flow[:,:,1].flatten(), flow[:,:,2].flatten())
def WriteKittiPngFile(path, width, height, u, v, mask=None):
""" Write 16-bit .PNG file as specified by KITTI-2015 (flow).
u, v are lists of float values
mask is a list of floats, denoting the *valid* pixels.
"""
data = array.array('H',[0])*width*height*3
for i,(u_,v_,mask_) in enumerate(zip(u,v,mask)):
data[3*i] = int(u_*64.0+2**15)
data[3*i+1] = int(v_*64.0+2**15)
data[3*i+2] = int(mask_)
# if mask_ > 0:
# print(data[3*i], data[3*i+1],data[3*i+2])
with open(path, 'wb') as png_file:
png_writer = png.Writer(width=width, height=height, bitdepth=16, compression=3, greyscale=False)
png_writer.write_array(png_file, data)
def ConvertMiddleburyFloToKittiPng(src_path, dest_path):
width, height, u, v, mask = ReadMiddleburyFloFile(src_path)
WriteKittiPngFile(dest_path, width, height, u, v, mask=mask)
def ConvertKittiPngToMiddleburyFlo(src_path, dest_path):
width, height, u, v, mask = ReadKittiPngFile(src_path)
WriteMiddleburyFloFile(dest_path, width, height, u, v, mask=mask)
def ParseFilenameKitti(filename):
# Parse kitti filename (seq_frameno.xx),
# return seq, frameno, ext.
# Be aware that seq might contain the dataset name (if contained as prefix)
ext = filename[filename.rfind('.'):]
frameno = filename[filename.rfind('_')+1:filename.rfind('.')]
frameno = int(frameno)
seq = filename[:filename.rfind('_')]
return seq, frameno, ext
def read_calib_file(filepath):
"""Read in a calibration file and parse into a dictionary."""
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
key, value = line.split(':', 1)
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
def load_calib_cam_to_cam(cam_to_cam_file):
# We'll return the camera calibration as a dictionary
data = {}
# Load and parse the cam-to-cam calibration data
filedata = read_calib_file(cam_to_cam_file)
# Create 3x4 projection matrices
P_rect_00 = np.reshape(filedata['P_rect_00'], (3, 4))
P_rect_10 = np.reshape(filedata['P_rect_01'], (3, 4))
P_rect_20 = np.reshape(filedata['P_rect_02'], (3, 4))
P_rect_30 = np.reshape(filedata['P_rect_03'], (3, 4))
# Compute the camera intrinsics
data['K_cam0'] = P_rect_00[0:3, 0:3]
data['K_cam1'] = P_rect_10[0:3, 0:3]
data['K_cam2'] = P_rect_20[0:3, 0:3]
data['K_cam3'] = P_rect_30[0:3, 0:3]
data['b00'] = P_rect_00[0, 3] / P_rect_00[0, 0]
data['b10'] = P_rect_10[0, 3] / P_rect_10[0, 0]
data['b20'] = P_rect_20[0, 3] / P_rect_20[0, 0]
data['b30'] = P_rect_30[0, 3] / P_rect_30[0, 0]
return data
|