File size: 5,071 Bytes
d9778ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""

This file defines the core research contribution

"""
import matplotlib

matplotlib.use("Agg")
import math

import torch
from torch import nn
from pixel2style2pixel.models.encoders import psp_encoders
from pixel2style2pixel.models.stylegan2.model import Generator
from pixel2style2pixel.configs.paths_config import model_paths


def get_keys(d, name):
    if "state_dict" in d:
        d = d["state_dict"]
    d_filt = {k[len(name) + 1 :]: v for k, v in d.items() if k[: len(name)] == name}
    return d_filt


class pSp(nn.Module):
    def __init__(self, opts):
        super(pSp, self).__init__()
        self.set_opts(opts)
        # compute number of style inputs based on the output resolution
        self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2
        # Define architecture
        self.encoder = self.set_encoder()
        self.decoder = Generator(self.opts.output_size, 512, 8)
        self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
        # Load weights if needed
        self.load_weights()

    def set_encoder(self):
        if self.opts.encoder_type == "GradualStyleEncoder":
            encoder = psp_encoders.GradualStyleEncoder(50, "ir_se", self.opts)
        elif self.opts.encoder_type == "BackboneEncoderUsingLastLayerIntoW":
            encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(
                50, "ir_se", self.opts
            )
        elif self.opts.encoder_type == "BackboneEncoderUsingLastLayerIntoWPlus":
            encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(
                50, "ir_se", self.opts
            )
        else:
            raise Exception("{} is not a valid encoders".format(self.opts.encoder_type))
        return encoder

    def load_weights(self):
        if self.opts.checkpoint_path is not None:
            print("Loading pSp from checkpoint: {}".format(self.opts.checkpoint_path))
            ckpt = torch.load(self.opts.checkpoint_path, map_location="cpu")
            self.encoder.load_state_dict(get_keys(ckpt, "encoder"), strict=True)
            self.decoder.load_state_dict(get_keys(ckpt, "decoder"), strict=True)
            self.__load_latent_avg(ckpt)
        else:
            print("Loading encoders weights from irse50!")
            encoder_ckpt = torch.load(model_paths["ir_se50"])
            # if input to encoder is not an RGB image, do not load the input layer weights
            if self.opts.label_nc != 0:
                encoder_ckpt = {
                    k: v for k, v in encoder_ckpt.items() if "input_layer" not in k
                }
            self.encoder.load_state_dict(encoder_ckpt, strict=False)
            print("Loading decoder weights from pretrained!")
            ckpt = torch.load(self.opts.stylegan_weights)
            self.decoder.load_state_dict(ckpt["g_ema"], strict=False)
            if self.opts.learn_in_w:
                self.__load_latent_avg(ckpt, repeat=1)
            else:
                self.__load_latent_avg(ckpt, repeat=self.opts.n_styles)

    def forward(

        self,

        x,

        resize=True,

        latent_mask=None,

        input_code=False,

        randomize_noise=True,

        inject_latent=None,

        return_latents=False,

        alpha=None,

    ):
        if input_code:
            codes = x
        else:
            codes = self.encoder(x)
            # normalize with respect to the center of an average face
            if self.opts.start_from_latent_avg:
                if self.opts.learn_in_w:
                    codes = codes + self.latent_avg.repeat(codes.shape[0], 1)
                else:
                    codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)

        if latent_mask is not None:
            for i in latent_mask:
                if inject_latent is not None:
                    if alpha is not None:
                        codes[:, i] = (
                            alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
                        )
                    else:
                        codes[:, i] = inject_latent[:, i]
                else:
                    codes[:, i] = 0

        input_is_latent = not input_code
        images, result_latent = self.decoder(
            [codes],
            input_is_latent=input_is_latent,
            randomize_noise=randomize_noise,
            return_latents=return_latents,
        )

        if resize:
            images = self.face_pool(images)

        if return_latents:
            return images, result_latent
        else:
            return images

    def set_opts(self, opts):
        self.opts = opts

    def __load_latent_avg(self, ckpt, repeat=None):
        if "latent_avg" in ckpt:
            self.latent_avg = ckpt["latent_avg"].to(self.opts.device)
            if repeat is not None:
                self.latent_avg = self.latent_avg.repeat(repeat, 1)
        else:
            self.latent_avg = None