Spaces:
Runtime error
Runtime error
File size: 11,450 Bytes
d9778ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common, train_utils
from criteria import id_loss, w_norm, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from training.ranger import Ranger
class Coach:
def __init__(self, opts):
self.opts = opts
self.global_step = 0
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
self.opts.device = self.device
if self.opts.use_wandb:
from utils.wandb_utils import WBLogger
self.wb_logger = WBLogger(self.opts)
# Initialize network
self.net = pSp(self.opts).to(self.device)
# Estimate latent_avg via dense sampling if latent_avg is not available
if self.net.latent_avg is None:
self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach()
# Initialize loss
if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!')
self.mse_loss = nn.MSELoss().to(self.device).eval()
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
if self.opts.id_lambda > 0:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
if self.opts.w_norm_lambda > 0:
self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg)
if self.opts.moco_lambda > 0:
self.moco_loss = moco_loss.MocoLoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
def train(self):
self.net.train()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
self.optimizer.zero_grad()
x, y = batch
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
loss.backward()
self.optimizer.step()
# Logging related
if self.global_step % self.opts.image_interval == 0 or (self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="train", step=self.global_step, opts=self.opts)
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
x, y = batch
with torch.no_grad():
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
loss, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
agg_loss_dict.append(cur_loss_dict)
# Logging related
self.parse_and_log_images(id_logs, x, y, y_hat,
title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="test", step=self.global_step, opts=self.opts)
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt'
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write(f'**Best**: Step - {self.global_step}, Loss - {self.best_val_loss} \n{loss_dict}\n')
if self.opts.use_wandb:
self.wb_logger.log_best_model()
else:
f.write(f'Step - {self.global_step}, \n{loss_dict}\n')
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception(f'{self.opts.dataset_type} is not a valid dataset_type')
print(f'Loading dataset for {self.opts.dataset_type}')
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
if self.opts.use_wandb:
self.wb_logger.log_dataset_wandb(train_dataset, dataset_name="Train")
self.wb_logger.log_dataset_wandb(test_dataset, dataset_name="Test")
print(f"Number of training samples: {len(train_dataset)}")
print(f"Number of test samples: {len(test_dataset)}")
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent):
loss_dict = {}
loss = 0.0
id_logs = None
if self.opts.id_lambda > 0:
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
loss_dict['loss_id'] = float(loss_id)
loss_dict['id_improve'] = float(sim_improvement)
loss = loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
if self.opts.lpips_lambda_crop > 0:
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop)
loss += loss_lpips_crop * self.opts.lpips_lambda_crop
if self.opts.l2_lambda_crop > 0:
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_l2_crop'] = float(loss_l2_crop)
loss += loss_l2_crop * self.opts.l2_lambda_crop
if self.opts.w_norm_lambda > 0:
loss_w_norm = self.w_norm_loss(latent, self.net.latent_avg)
loss_dict['loss_w_norm'] = float(loss_w_norm)
loss += loss_w_norm * self.opts.w_norm_lambda
if self.opts.moco_lambda > 0:
loss_moco, sim_improvement, id_logs = self.moco_loss(y_hat, y, x)
loss_dict['loss_moco'] = float(loss_moco)
loss_dict['id_improve'] = float(sim_improvement)
loss += loss_moco * self.opts.moco_lambda
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step)
if self.opts.use_wandb:
self.wb_logger.log(prefix, metrics_dict, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print(f'Metrics for {prefix}, step {self.global_step}')
for key, value in metrics_dict.items():
print(f'\t{key} = ', value)
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.log_input_image(x[i], self.opts),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, f'{subscript}_{step:04d}.jpg')
else:
path = os.path.join(self.logger.log_dir, name, f'{step:04d}.jpg')
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.opts.start_from_latent_avg:
save_dict['latent_avg'] = self.net.latent_avg
return save_dict
|